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The processor
Part of the trusted computing base (TCB):

• but is optimized for performance, 
   … security may be secondary

Processor design and security:

• Important security features:  hardware enclaves,
 memory encryption (TME),  RDRAND, and others.

• Some features can be exploited for attacks:

– Speculative execution,   transactional memory,   …



Intel  SGX  /  TDX

An overview

Software Guard eXtensions (SGX)
Trust Domain eXtensions (TDX)

Also AMD SME and SEV 



SGX / TDX:  Goals
Extension to Intel processors that support:

• Enclaves:   running code and memory isolated from the rest
 of system  (code outside of enclave cannot read enclave memory)

• Attestation:   prove to a remote system what code is  
 running in the enclave

• Minimum TCB:   only processor is trusted, nothing else!
 RAM and peripherals are untrusted
 ⇒ Memory controller must encrypt all writes to RAM   (TME)



Why enclaves 1: cloud computing

Goal: move data & VM to the cloud, without cloud seeing them in the clear

• Simple solution:  encrypt data and VM, key stays with Client

• The problem:  now cloud cannot search or compute on data
 ⇒  defeats the purpose of cloud computing

Client Cloud
    (AWS, GCP, …)

Virtual
Machine

(VM)

private
data



A solution:  a HW enclave

Cloud
    (AWS, GCP, …)

hardware

hypervisor

TDX Isolated VM

private code and data

Goal: no one can read the memory of the isolated VM;
 not the hypervisor, and not even a malicious admin

An unprotected VM

hypervisor can 
read memory

How does this work?    Will see in a minute.



Why enclaves 2: protecting keys

Storing a Web server HTTPS secret key:
 secret key is only available in the clear inside an enclave
 ⇒ malware cannot extract the key

web server

web server process memory

enclave
code

SGX isolated memory pages: 
only enclave code can read

OS, malware, and admin cannot read key

Web server
code and data

OS and malware can read these addresses



Intel SGX: how does it work?
An application defines part of itself as an enclave

Process memory

Regular (non-isolated) memory



How does it work?
An application defines part of itself as an enclave

Process memory

Enclave

create enclave

isolated memory
in process memory space

Regular (non-isolated) memory



How does it work?
An application defines part of itself as an enclave

Enclave

create enclave

call TrustedFun

enclave code runs
using enclave data

67g35bd954bt

Process memory

Regular (non-isolated) memory

enclave memory:
only readable
by enclave codeexit e

nclave

code here cannot
read enclave memory



How does it work?
Part of process memory holds the enclave:

Process memory

app
code OS

low highenclave

enclave
code

enclave
data

• Processor prevents access to cached enclave data outside of enclave.

• Enclave code and data are written encrypted to RAM   (TME)



Creating an enclave:  new instructions

• ECREATE: establish memory address for enclave
• EADD: copies memory pages into enclave
• EEXTEND: computes hash of enclave contents (256 bytes at a time)

• EINIT: verifies that hashed content is properly signed
  if so, initializes enclave   (signature = RSA-3072)

• EENTER: call a function inside enclave
• EEXIT: return from enclave

Enclave init code
loaded as cleartext



When to send secret data to enclave:  attestation

The problem: How does a remote system know when it can trust an 
enclave with its data?

Remote Attestation (simplified):

enclave

Intel’s
app  enclave

Intel’s
quoting enclave

pk,  report
pk,  sk 

cert = [pk, report]

report:  contains  hash(code)

validate cert

E(pk,  data)

datask

remote
server



SGX Summary
An architecture for managing secret data

• Intended to process data that cannot be read by 
anyone, except for code running in enclave

• Attestation:  proves what code is running in enclave

• Minimal TCB:  nothing trusted except for main processor
    ⇒   Memory controller encrypts all writes to RAM

• Not suitable for legacy applications:  must split app into parts
• Requires lots of code rewriting … not suitable for legacy apps



TDX Briefly: an easy-to-use encalve
TDX:  puts an entire VM in an enclave  (e.g., an entire web server)

• Support for attestation and minimal TCB  (as with SGX)

• Isolated VMs are managed by a new Intel TDX Module
• The TDX module is implemented in signed code by Intel
• It is loaded into an isolated region of physical memory
• Creates, manages, and attests to isolated VMs

https://cdrdv2.intel.com/v1/dl/getContent/690419



One more example application
Data science on federated data:

MPC protocol

dataset1 dataset2

Can we run analysis on  union(dataset1, dataset2)  ??

cryptographic solutions (e.g., MPC) work for simple computations

result



An example application
Data science on federated data:

dataset1 dataset2

For more complex analysis, can use (secure) hardware enclave

enclave

analysis
code

pk, certpk, cert

E(pk, data1) E(pk, data2)

untrusted
environment

Cert includes 
hash of enclave code



An example application
Data science on federated data:

dataset1 dataset2

For more complex analysis, can use (secure) hardware enclave

enclave

data1
data2

pk, certpk, cert

E(pk, data1) E(pk, data2)

result

Cert includes 
hash of enclave code



SGX insecurity:  (1) side channels

Attacker controls the OS.   OS sees lots of side-channel info:
• Memory access patterns
• State of processor caches as enclave executes
• State of branch predictor

processor
OS

enclave DRAM
memory

memory bus
 (enc data)

All can leak 
enclave data.
Difficult to block.



SGX insecurity:  (2) extract quoting key

Attestation:  proves to 3rd party what code is running in enclave
• Quoting sk stored in Intel enclave on untrusted machines

What if attacker extracts sk from some quoting enclave?
• Can attest to arbitrary non-enclave code
 … see Foreshadow attack and Intel’s response

Intel’s
quoting enclave

attestation
data

sk



The Spectre attack

Speed vs. security in HW

[slides credit: Paul Kocher]



Performance drives CPU purchases
Clock speed maxed out:
– Pentium 4 reached 3.8 GHz in 2004
– Memory latency is slow and not improving much

To gain performance, need to do more per cycle!
– Reduce memory delays ⟶  caches
– Work during delays  ⟶  speculative execution



Memory caches    (4-way associative)

Caches hold local (fast) copy of recently-accessed 64-byte chunks of memory

MAIN 
MEMORY

Big, slow
e.g. 16GB SDRAM

Set Addr Cached Data ~64B
0 F0016280

31C6F4C0
339DD740
614F8480

B5 F5 80 21 E3 2C..
9A DA 59 11 48 F2..
C7 D7 A0 86 67 18..
17 4C 59 B8 58 A7..

1 71685100
132A4880
2A1C0700
C017E9C0

27 BD 5D 2E 84 29..
30 B2 8F 27 05 9C..
9E C3 DA EE B7 D9..
D1 76 16 54 51 5B..

2 311956C0
002D47C0
91507E80
55194040

0A 55 47 82 86 4E..
C4 15 4D 78 B5 C4..
60 D0 2C DD 78 14..
DF 66 E9 D0 11 43..

3 9B27F8C0
8E771100
A001FB40
317178C0

84 A0 7F C7 4E BC..
3B 0B 20 0C DB 58..
29 D9 F5 6A 72 50..
35 82 CB 91 78 8B..

4 6618E980
BA0CDB40
89E92C00
090F9C40

35 11 4A E0 2E F1..
B0 FC 5A 20 D0 7F..
1C 50 A4 F8 EB 6F..
BB 71 ED 16 07 1F..

Addr: 
2A1C0700
Data: 9E C3 DA EE B7 D3..

Addr: 
132E1340

Address:
132E1340

Data: AC 99 17 8F 44 09..

Addr: 
132E1340
Data: AC 99 17 8F 44 09..

hash(addr) 
to map to 
cache set

132E1340 Evict to make roomAC 99 17 8F 44 09..

MEMORY 
CACHE

2A1C0700

Data:
AC 99 17 8F 44 09..

CPU
Sends address,
Receives data

Reads change system state:
• Read to newly-cached 

location is fast
• Read to evicted location 

is slow

Fast

Slow

Fast



Speculative execution

if  (uncached_value == 1)     // load from memory
       a = compute(b)

CPUs can guess likely program path and do speculative execution
ê Example:

ê Branch predictor guesses if() is ‘true’  (based on prior history)
ê Starts executing compute(b) speculatively

ê When value arrives from memory, check if guess was correct:
ê Correct:      Save speculative work  ⇒  performance gain
ê Incorrect:   Discard speculative work  ⇒  no harm ????



Speculative Execution

CPU regularly performs incorrect 
calculations, then deletes mistakes

Architectural Guarantee

Register values eventually match 
result of in-order execution

Is making + discarding mistakes the same as in-order execution?

The processor executed instructions that were not supposed to run !!

The problem:  instructions can have observable side-effects



Conditional branch (Variant 1) attack
if (x < array1_size)
   y = array2[ array1[x]*4096 ];

Suppose   unsigned  int x   comes from untrusted caller

Execution without speculation is safe:
array2[array1[x]*4096] not eval unless   x < array1_size

What about with speculative execution?



Conditional branch (Variant 1) attack

Before attack:

• Train branch predictor to expect if() is true
(e.g. call with x < array1_size)

• Evict  array1_size and 
 array2[] from cache

if (x < array1_size)
   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached

� � �

only care about cache status



Conditional branch (Variant 1) attack
if (x < array1_size)
   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached

� � �

only care about cache status

Attacker calls victim with x=1000

Speculative exec while waiting for array1_size:

ê Predict that if() is true
ê Read address (array1 base + x)  

  (using out-of-bounds x=1000) 
ê Read returns secret byte = 09  

  (in cache ⇒  fast )



Conditional branch (Variant 1) attack
if (x < array1_size)
   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached

� � �

only care about cache status

Attacker calls victim with x=1000

Next:
ê Request mem at  (array2 base + 09*4096)

ê Brings array2[09*4096] into the cache

ê Realize if() is false:  discard speculative work

proceed to next instruction



Conditional branch (Variant 1) attack
if (x < array1_size)
   y = array2[array1[x]*4096];

Memory & Cache Status
array1_size = 00000008

Memory at array1 base:
 8 bytes of data (value doesn’t matter)
Memory at array1 base+1000:
 09 F1 98 CC 90...(something secret)

array2[ 0*4096]
array2[ 1*4096]
array2[ 2*4096]
array2[ 3*4096]
array2[ 4*4096]
array2[ 5*4096]
array2[ 6*4096]
array2[ 7*4096]
array2[ 8*4096]
array2[ 9*4096]
array2[10*4096]
array2[11*4096]

Contents don’t matter

Uncached Cached

� � �

only care about cache status

Attacker calls victim with x=1000

Attacker:   (another process or core)
• for i=0 to 255:  

   measure read time for array2[i*4096]

• When i=09  read is fast (cached), 
reveals secret byte !!

• Repeat with x=1001,1002,…   (10KB/s)



Violating JavaScript’s sandbox

index will be in-bounds on training passes,
and out-of-bounds on attack passes

JIT thinks this check ensures index < length, so it omits bounds 
check in next line.  Separate code evicts length for attack passes

Do the out-of-bounds read on attack passes!

Keeps the JIT from adding unwanted 
bounds checks on the next line

Leak out-of-bounds read result into cache state!

Need to use the result so the 
operations aren’t optimized away

“|0” is a JS optimizer trick 
(makes result an integer)

if (index < simpleByteArray.length) {
  index = simpleByteArray[index | 0];
  index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;
  localJunk ^= probeTable[index|0]|0;
}

4096 bytes = memory page size

• Browsers run JavaScript from untrusted websites
– JIT compiler inserts safety checks, including bounds checks on array accesses

• Speculative execution runs through safety checks… 

Can evict length and probeTable from JavaScript (easy)
    … then use timing to detect newly-cached location in probeTable



Indirect branches:  can go anywhere ,   e.g.    jmp[rax]
– If destination is delayed, CPU guesses and proceeds speculatively
– Find an indirect jmp with attacker controlled register(s)

… then cause mispredict to a useful ‘gadget’   y = array2[array1[x]*4096]; 

Attack steps:
– Mistrain branch prediction so speculative execution will go to gadget
– Evict address [rax] from cache to cause speculative execution
– Execute victim so it runs gadget speculatively
– Detect change in cache state to determine memory data

Variant 2:  indirect branches



Non-mitigations
Can we prevent Spectre without a huge cost in performance?

Idea 1:  fully restore cache state when speculation fails.    

Problem: Insecure!
 Speculative execution can have observable 

side effects beyond the cache state

if (x < array1_size) {
   y = array1[x];
   do_something_observable(y);
}

occupy a bus:  detectable 
from another core,

or cause EM radiation



Variant 1 mitigation:  Speculation stopping instruction (e.g. LFENCE)

ê Idea:  insert LFENCE on all vuln. code paths 

if (x < array1_size)
   LFENCE      // processor instruction
   y = array2[ array1[x]*4096 ];

LFENCE:  stops speculative execution. 



Variant 1 mitigation:  Speculation stopping instruction (e.g. LFENCE)

Put LFENCES everywhere? ⇒  Abysmal performance

Insert by smart compiler?

Transfer of blame (CPU -> SW):   “you should have put an LFENCE there”

Must protect against all potentially-exploitable patterns
Supported in LLVM, along with other mitigations
 ⟹ protects all LLVM-based compilers



Mitigations: summary
Mitigations are non-trivial for all Spectre variants:

ê Software must deal with microarchitectural complexity

ê Mitigations are hard to test:

ê an active area of research  (see Prof. Caroline Trippel’s work)

More ideas needed !



... but there is more
More speculative execution attacks:
• Meltdown
• Rogue inflight data load (RIDL) and Fallout

• ZombieLoad
• Micro-op caches (June 2020)

• Pointer prefetching in Apple’s M1  (March 2024)

Enable reading unauthorized memory  (client, cloud, SGX)

• Mitigating incurs significant performance costs



How to evaluate a processor?
Processors are measured by their performance on benchmarks:

• Processor vendors add many architectural features 
to speed-up benchmarks

• Until recently:  security implications were secondary

 ⇒    lots of security issues found in last few years

     … likely more will be found in coming years



THE  END


