
Internet Protocol Security (Contd.)
CS155 Computer and Network Security

L2: Ethernet
Provides connectivity between hosts on a single Local Area Network

Data is split into ~1500 byte Frames, which are addressed to a device’s
physical (MAC) address — assigned by manufacturer

Switches forward frames based on learning where different MACs are
located. No guarantees not sent to other hosts!

No security (confidentiality, authentication, or integrity)

ARP: Address Resolution Protocol
ARP lets hosts to find each others’ MAC addresses on a local network. For

example, when you need to send packets to the upstream router to reach
Internet hosts

Client: Broadcast (all MACs): Which MAC address has IP 192.168.1.1? 
Response: I have this IP address (sent from correct MAC)

No built-in security. Attacker can impersonate a host by faking its identity and
responding to ARP requests or sending gratuitous ARP announcements

IP: Internet Protocol
Provides routing between hosts on the Internet. Unreliable. Best Effort.

 - Packets can be dropped, corrupted, repeated, reordered

Routers simply route IP packets based on their destination address.

 - Must be simple in order to be fast — insane number packets FWD'ed 

No inherent security. Packets have a checksum, but it’s non-
cryptographic. Attackers can change any packet.

Source address is set by sender—can be faked by an attacker

BGP (Border Gateway Protocol)

Internet Service Providers (ISPs) announce their presence on the Internet via
BGP. Each router maintains list of routes to get to different announced prefixes

No authentication—possible to announce someone else’s network

Commonly occurs (often due to operator error but also due to attacks)

Ports
Each application (e.g., HTTP server) on a host is identified by a port number

TCP connection established between port A on host X to port B on host Y

Ports are 1–65535 (16 bits)

Some destination port numbers used for specific applications by convention

!

"

!

"

Common Ports
Port Application

80 HTTP (Web)

443 HTTPS (Secure Web)

25 SMTP (mail delivery)

67 DHCP (host config)

22 SSH (secure shell)

23 Telnet

DNS (Domain Name System)
Application-layer protocols (and people) usually refer to Internet
host by host name (e.g., google.com)

DNS is a delegatable, hierarchical name space

www.stanford.edu

Top Level Domain 
(TLD)Second Level  

Domain
Third Level  

Domain

http://google.com

DNS Record
A DNS server has a set of records it authoritatively knows about

$ dig bob.ucsd.edu

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30439
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6

;; QUESTION SECTION:
;bob.ucsd.edu. IN A

;; ANSWER SECTION:
bob.ucsd.edu. 3600 IN A 132.239.80.176

;; AUTHORITY SECTION:
ucsd.edu. 3600 IN NS ns0.ucsd.edu.
ucsd.edu. 3600 IN NS ns1.ucsd.edu.
ucsd.edu. 3600 IN NS ns2.ucsd.edu.

DNS Root Name Servers
In total, there are 13 main DNS root servers, each of which is
named with the letters 'A' to 'M'.

DNS Packet
DNS requests sent over UDP

Four sections: questions,
answers, authority, additional
records

Query ID:
16 bit random value

Links response to query

Request

Response

Authoritative Response

DNS Security

Users/hosts trust the host-address mapping provided by DNS

 Used as basis for many security policies:

 Browser same origin policy, URL address bar

Interception of requests or compromise of DNS servers can result
in incorrect or malicious responses

Caching
DNS responses are cached

Quick response for repeated translations

NS records for domains also cached

DNS negative queries are cached

Save time for nonexistent sites, e.g. misspelling

Cached data periodically times out

Lifetime (TTL) of data controlled by owner of data

TTL passed with every record

DNS Cache Poisoning

DNS query results include Additional Records section

 – Provide records for anticipated next resolution step

Early servers accepted and cached all additional records
provided in query response

Glue Records
Can we just stop using additional section?
 – Only accept answers from authoritative servers?

Glue records: non-authoritative are records necessary to
contact next hop in resolution chain
 – Necessary given current design of DNS

Bailiwick Checking: Only accept additional records that are
for a domain in the original question.

DNS Spoofing

Scenario: DNS client issues query to server

Attacker would like to inject a fake reply
Attacker does not see query or real response

How does client authenticate response?

DNS Spoofing
How does client authenticate response?

UDP port numbers must match
Destination port usually port 53 by convention

16-bit query ID must match

Kaminsky Attack

Try Again!

Defenses

Increase QueryID space. But how? Don’t want to change packet.

Randomize src port, additional 11 bits of entropy

 - Attack now takes several hours

DNS Rebinding

Rebinding Defenses
Browser Mitigations:
 - Refuse to switch IPs mid session

 - Interacts poorly with proxies, VPNs, CDNs, etc

 - Not consistently implemented in any browser

Server Defenses
 - Check Host header for unrecognized domains

 - Authenticate users with something else beyond IP address

DNSSEC
Adds authentication and integrity to DNS responses

Authoritative DNS servers sign DNS responses using
cryptographic key

Clients can verify that a response is legitimate by checking
signature through PKI similar to HTTPS

Most people don’t use DNSSEC and never will. Use TLS instead.

Network Security Takeaway
Assume the network is out to get you.

If you want any guarantee of any security, use TLS.

Denial of Service Attacks

Goal: take large site offline by overwhelming it with network
traffic such that they can’t process real requests

How: find mechanism where attacker doesn’t have to spend a lot
of effort, but requests are difficult/expensive for victim to
process

Types of Attacks

DoS Bug: design flaw that allows one machine to disrupt a
service. Generally a protocol asymmetry, e.g., easy to send
request, difficult to create response. Or requires server state.

DoS Flood: control a large number of requests from a botnet of
machines you control

Possible at Every Layer

Link Layer: send too much traffic for switches/routers to handle

TCP/UDP: require servers to maintain large number of concurrent
connections or state

Application Layer: require servers to perform expensive queries
or cryptographic operations

TCP Handshake

SYN Floods

Core Problem

Problem: server commits resources (memory) before confirming
identify of client (when client responds)

Bad Solution:
 - Increase backlog queue size

 - Decrease timeout

Real Solution: Avoid state until 3-way handshake completes

SYN Cookies
Idea: Instead of storing SNc and SNs…  

send a cookie back to the client.

 
L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T)

 key: picked at random during boot

T = 5-bit counter incremented every 64 secs. 
SNs = (T || mss || L)

Honest client sends ACK (AN=SNs , SN=SNC+1)

 Server allocates space for socket only if valid SNs

Server does not save state 
(loses TCP options)

60-70x Increase in Size

DNS ANY example.com.

 A 1.2.3.8  A 1.2.3.9A 1.2.3.4  A 1.2.3.5  A 1.2.3.6A 1.2.3.7  A 1.2.3.8  A 1.2.3.9

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

Image: Cloudflare

Amplification Attacks

Common UDP Amplifiers

DNS: ANY query returns all records server has about a domain

NTP: MONLIST returns list of last 600 clients who asked for the
time recently

Only works if you can receive a big response by sending a single
packet — otherwise spoofing doesn’t help you.

Amplification Attacks

2013: DDoS attack generated 300 Gbps (DNS) 
- 31,000 misconfigured open resolvers, each at 10 Mbps

 - Source: 3 networks that allowed IP spoofing

2014: 400 Gbps DDoS attacked used 4500 NTP servers

Memcache: retrieve large record

The server responds by firing back as much
as 50,000 times the data it received.

Memcache

October 21, 2016

Krebs Graph

Source: 2017 Akamai State of the Internet

“The magnitude of the attacks seen during the final week were significantly larger than
the majority of attacks Akamai sees on a regular basis. […] In fact, while the attack on
September 20 was the largest attack ever mitigated by Akamai, the attack on September
22 would have qualified for the record at any other time, peaking at 555 Gbps.”

Image: Verisign

“We are still working on analyzing the data but the estimate at the time of
this report is up to 100,000 malicious endpoints. […] There have been
some reports of a magnitude in the 1.2 Tbps range; at this time we are
unable to verify that claim.”

A Botnet of IoT Devices

OVH/Dyn/KrebsBot Master

GRE 

HTTP 

TLS

≈ 200K Hosts
200K IoT devices

Not Amplification. 
Flood with SYN, ACK, UDP, and GRE packets

The Mirai Malware

Command
& Control LoaderReport

Server

Devices

Infrastructure

Attacker

DDoS Target

��Send command

��Dispatch

� Attack

��Report

��Scan

���Load� ��Relay

Victim

Bots

5-7. Later, the bot master will issue commands to
pause scanning and to start an attack

Attack Command:

- Action (e.g., START, STOP)

- Target IP(s)

- Attack Type (e.g., GRE, DNS, TCP)

- Attack Duration

Password Guessing

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

08/01/16 09/01/16 10/01/16 11/01/16 12/01/16 01/01/17 02/01/17

#
ne
tw
or
k
te
le
sc
op
e
sc
an
s

Date

Total Mirai Scans
TCP/23231

TCP/22
TCP/2222
TCP/37777
TCP/443
TCP/5555

TCP/6789
TCP/8080
TCP/80
TCP/23

TCP/2323
TCP/7547

~600K devices compromised

Mirai Population

Booter Services

Google Project Shield
DDoS Attacks are often used to censor content. In the case of Mirai,
Brian Kreb’s blog was under attack.

Google Project shield uses Google bandwidth to shield vulnerable
websites (e.g., news, blogs, human rights orgs)

Moving Up Stack: GET Floods
Command bot army to:

 * Complete real TCP connection

 * Complete TLS Handshake

 * GET large image or other content

Will bypass flood protections…. but attacker can no longer use
random source IPs

Victim site can block or rate limit bots

Github Attacks
1.35 Tbps attack against Github caused by javascript injected into HTTP web

requests

The Chinese government was widely suspected to be behind the attack

Client Puzzles
Idea: What if we force every client to do moderate amount of
work for every connection they make?

Example:
 1) Server Sends: C

 2) Client: find X s.t. LSBn(SHA-1(C||X)) = 0n

Assumption:
 Puzzle takes 2n for the client to compute (0.3 s on 1Ghz core)

 Solution is trivial for server to check (single SHA-1)

Client Puzzles
Not frequently used in the real world

Benefits:
 * Can change n based on amount of attack traffic

Limitations:
 * Requires changes to both protocols, clients, and servers

 * Hurts low power legitimate clients during attack (e.g., phones)

