Crypto Concepts

Symmetric encryption,
Public key encryption,
and TLS

Cryptography

|s:
— A tremendous tool for protecting information
— The basis for many security mechanisms

Is not:
— The solution to all security problems
— Reliable unless implemented and used properly
— Something you should try to invent yourself

Goal 1: Secure communication

(protecting data in motion)

< (&

*ﬁ-l k of America Corporation [US] | https://www.bankofamerica.com

Personal SmallBusiness Wealth Management Businesses & Institutions “Z About Us

-~

BANK OF AMERICA %7

Checking Savings Credit Cards Home Loans Auto Loans

Online ID Open a checking accoun

Passcode

Bank of America Advantage Banking helps you s

tomorrow.
. Save Online ID

Forgot ID/Passcode?

no eavesdropping
Security & Help

no tampering

Dan Boneh

Transport Layer Security / TLS

Standard for Internet security

— Goal: “.. provide privacy and reliability between two
communicating applications”

Two main parts

1. Handshake Protocol: Establish shared secret key
using public-key cryptography

2. Record Layer: Transmit data using negotiated key

Our starting point: Using a key for encryption and integrity

Alice

Goal 2: protected files

(protecting data at rest)

File system

File 1

> Alice

No eavesdropping
No tampering

Building block: symmetric cipher

Alice . Bob

E, D: cipher k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext N: nonce (non-repeating)

Encryption algorithm is publicly known
= never use a proprietary cipher

Use Cases

Single use key: (one time key)

* Key is only used to encrypt one message
e encrypted email: new key generated for every email
* No need for nonce (setto0)

Multi use key: (many time key)

* Key is used to encrypt multiple messages or multiple files
e TLS: same key used to encrypt many frames

* Use either a unique nonce or a random nonce

First example: One Time Pad (singie use key)

Vernam (1917)

Key:

Plaintext:

Ciphertext:

Encryption: c=E(k, m)=m & k

Decryption: Dk, c)=c@®k =(m@ k) Bk=m

One Time Pad (OTP) Security

Shannon (1949):

— OTP is “secure” against one-time eavesdropping

— without key, ciphertext reveals no “information”
about plaintext

Problem: OTP key is as long as the message

St ream Cl p h ers (single use key)

Problem: OTP key is as long as the message
Solution: Pseudo random key -- stream ciphers

[key |
c « PRG(K) ® m
O message |
[ciphertext |

Example: ChaCha20 (one-timeifnononce) key: 128 or 256 bits.

Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

c; < m; ® PRG(k)
C, < m, ® PRG(k)

Eavesdropper does:

c,Pc, - m; ® m,

What if want to use
same key to encrypt
two files?

Enough redundant information in English that:

m® m, - my;, m,

Block ciphers: crypto work horse

n bits n bits
PT Block CT Block

Key K Bits

Canonical examples:

2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

— i ———————— —

o
=
o

R(kZI) <~
R(k3l) <~

c
=
o

R(k,m): round function

for AES128: 10 rounds, AES256: n=14 rounds

AES-NI: AES in hardware (ntel, AMD, ARM)

New x86 hardware instructions used to implement AES:
 aesenc, aesenclast: one round of AES

aesenc xmml, xmm2 (result written to xmm1)

) \)

Y Y
state round key

 aesdec, aesdeclast: one round of AES
* aeskeygenassist: do AES key expansion

— more than 10x speedup over a software AES
— better security: all AES instructions are constant time

Incorrect use of block ciphers

Electronic Code Book (ECB):

PT: | [[y | [[m,] [| = =] | [|
CT: | [[C_ | [[¢C, | [| = =] [[|
Problem:

— if m;=m, then c;=c,

In pictures

An example plaintext

Encrypted with AES in ECB

Dan Boneh

CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

E(k,IV+L)

ciphertext

Why is this secure for multiple messages? See the crypto course (cs255)

A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.
CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

Message Integrity: MACs

* Goal: provide message integrity. No confidentiality.

— ex: Protecting public binaries on disk.

K K

- message m tag
> -

Generate tag: Verify tag: ?
tag < S(k, m) V(k, m, tag) = ‘yes’

Construction: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

— Standardized method: HMAC
S(k, msg) = H(k®opad || H(k®ipad || msg))

Why is this MAC construction secure?

... see the crypto course (cs255)

Combining MAC and ENC (Auth. Enc.)

Encryption key K. MAC key = k;

Option 1: (SSL) MAC(Kz, m) enc kg
Esga — Esea NAGY — s
Opt;on 2: (IPsec, TLS 1.3) S e MAC(Kz, ¢)
IVAYS I s o Bl
correct
Option 3: (SSH) enc ke MAC(kz, m)

|||||||||||||||||||||||||||
IIIIIIIIIIIIIIIIIIIIIIIIII

I lllllllllllllllllllllllllll
llllllllllllllllllllllllll

lllllllllllllllllllllllllll
|||||||||||||||||||||||||||

AEAD: Auth. Enc. with Assoc. Data

AEAD: encrypted

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllllllllllll

associated data [===———==encry

|||||||||||||||||||||||||||||||

authenticated

AES-GCM: CTR mode encryption then MAC
(MAC accelerated via Intel’s PCLMULQDQ instruction)

Example AES-GCM functions

int encrypt(
unsigned char *key, // key
unsigned char *iv, intiv_len, // nonce
unsigned char *plaintext, int plaintext_len, // plaintext
unsigned char *aad, int aad _len, // assoc. data
Jn;g;ea cFa?*ziphertext) // output ct

int decrypt(// error if invalid MAC on (aad, ciphertext)
unsigned char *key, // key

unsigned char *ciphertext, int ciphertext_len, // plaintext
unsigned char *aad, int aad _len, // assoc. data

unsigned char *plainrtext) // output pt

Summary

Shared secret key:

e Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]
e One-time key: ex: astream cipher

e Many-time key: ex: AES-CTR with a unique/random nonce

4] ™
Integrity: HMAC

KAuthenticated encryption: encrypt-then-MAC using AES-GCM)

Crypto Concepts

encryption and
compression problems

Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

* Does not work ... ciphertext looks like a random string

Option 2: first compress and then encrypt

 Used in many Internet protocols (TLs, HTTP, QUIC, ...)

* Trouble ...

TrO u b I e s [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl ‘ [’
Cookie: uid=jhPL8g69684rksfsdg | |

N

POST /bank.com/buy?id=goog ’ [] ‘
Cookie: uid=jhPL8g69684rksfsdg |

1
]

Second message compresses better than first:
network observer can distinguish the two messages!

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=aapl | [] ‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Javascript can issue requests to Bank,
but cannot read Cookie value

Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=a) [‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=b) [‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

Even worse: the CRIME attack o
Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=j) ‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

ciphertext slightly shorter
= first character of Cookie is “j”

Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=ja) [‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

observe ciphertext size

Even worse: the CRIME attack oo
Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=jh) ‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

ciphertext slightly shorter
= 2" character of Cookie is “h”

Even worse: the CRIME attack

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

3
il

Javascript

Recover entire cookie after
256 x |Cookie| tries

Takes several minutes (simplified)

What to do?

Disable compression @

Use a different compression context for parts
under Javascript control and parts that are not

Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression

Crypto Concepts

Public key cryptography

(1) Public-key encryption

Tool for managing or generating symmetric keys

Alice

Nl 2

-@‘ C D(sk,c)=m
Alice, . t-ﬁ S

E(pk, m;)=c,

* E-Encryption alg. pk — Public encryption key
* D-—Decryption alg. sk — Secret decryption key

Algorithms E, D are publicly known.

Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk,) : aone-way function
— Computing vy = F(pk, x) is easy
— One-way: given random vy, finding x s.t. y = F(pk,x) is difficult

3. Algorithm Fi(sk, -) : Invert F(pk,) using trapdoor SK

Fi(sk, y) = x

Example: RSA

1. KeyGen: generate two equal length primes p, g
set N <« p-q (3072 bits ~ 925 digits)

set e<—2164+1=65537 ; d<— e (mod ¢@(N))

pk =(N, e) K sk =(N, d)

2. RSA(pk, x): X = (x*mod N)

Inverting this function is believed to be as hard as factoring N

3. RSA™(pk, y) : v — (y9mod N)

Public Key Encryption with a TDF

Co Cy

KeyGen: generate pk and sk

Encrypt(pk, m):
— choose random x € domain(F) andset k<« H(x)

— Co < F(pk,x) , ¢« E(k, m) (E: symmetric cipher)

— send ¢ =(cy Cq)

Decrypt(sk, c=(c,,c,)): x<« F'(sk,c) , k<H(x), m<« Dk, c,)

security analysis in crypto course (cs255)

(2) Digital signhatures

Goal: bind document to author
* Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F (sk, H(m))

verify(pk, m, sig) := acceptif F(pk, sig)=H(m)

Digital sighatures

* Only someone who knows sk can sign a message m

* Anyone who has pk can verify a (msg, signature) pair

sign(sk, m) := F'l(sk, H(m))

verify(pk, m, sig) := acceptif F(pk, sig)=H(m)

Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Browser Server Bob CA
Alice generate pk and
(sk,pk) proof “I am Bob”
check
pkea pkea issue Cert with ske, : proof
@?ob’s ?
verify @; Bob’s ; ; key is pk J
cert ‘keyispk L‘i)
@ -ﬁ)

Bob uses Cert for an extended period (e.g. one year)

Sample certificate:

-
& Jerlificale

mail.google.com
Issued by: GTS CA1C3

Expires: Sunday, June 19, 2022 at 7:26:20 PM Pacific
Daylight Time

Vv Details

Country
State/Province
Locality
Organization

Common Name

Country
Organization
Common Name

Serial Number
Version
Signature Algorithm

us

California
Mountain View
Google Inc
mail.google.com

us
Google Trust Services
Google Internet Authority G3

3495829599616174946
3
SHA-256 with RSA

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
65 bytes : 04 D5 63 FC 4D F9 4E 91....

256 bits

Encrypt, Verify, Derive

256 bytes : 3F FE 04 7B BEB0 321D ...

Dan Boneh

Signature schemes used in the real world

RSA signature scheme:
* Fast to verify, but signatures are long

e Often used in certificates

ECDSA, Schnorr, BLS signature schemes:
* Faster to generate signature and more compact than RSA

 Used everywhere, other than web certificates

(3) Key exchange

Goal: Browser and Server want a shared secret, unknown to attacker

>
<€
Browser N Server
<€

I t—attacker 77 ‘

key e key
Example: Diffie-Hellman key exchange.

* Only secure against eavesdropping

 TLS 1.3: enhances Diffie-Hellman key exchange
—> security against an active attacker

TLS 1.3 session setup (simplified)

/\ Diffie-Hellman key exchange

Server
ServerHello: nonces , KeyShare, Enc[certs,...] —
—
CertVerify: Enc[Sigs(data)], Finished key

cert
Finished

—

Client ClientHello: noncec, KeyShare

session-keys «— HKDF(DHkey, nonce., nonces)

Encerted AEEIicationData :
EnchEted AEEIicationData

Dan Boneh

P ro p e rt i e S @ Connection - secure (strong TLS 1.3)

Nonces: prevent replay of an old session Gmail

Forward secrecy: server compromise does not expose old sessions
Some identity protection: certificates are sent encrypted

One sided authentication:
— Browser identifies server using server-cert
— TLS has support for mutual authentication
e requires a client pk/sk and client-cert

Summary: crypto concepts

Symmetric cryptography:
Authenticated Encryption (AE) and message integrity

Public-key cryptography:
Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA
— Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures

