
Dan Boneh

Control Hijacking

Control Hijacking:
Defenses

Dan Boneh

Recap: control hijacking attacks
Stack smashing: overwrite return address or function pointer

Heap spraying: reliably exploit a heap overflow

Use after free: attacker writes to freed control structure,
 which then gets used by victim program

Integer overflows

Format string vulnerabilities

⋮

Dan Boneh

The mistake: mixing data and control
• An ancient design flaw:

– enables anyone to inject control signals

• 1971: AT&T learns never to mix control and data

Dan Boneh

Control hijacking attacks
The problem: mixing data with control flow in memory

local
variables SFP ret

addr arguments

stack frame
data overwrites
return address

Later we will see that mixing data and code is also the
reason for XSS, a common web vulnerability

Dan Boneh

Preventing hijacking attacks
1. Fix bugs:

– Audit software
• Automated tools: Coverity, Infer, … (more on this next week)

– Rewrite software in a type safe languange (Java, Go, Rust)
• Difficult for existing (legacy) code …

2. Platform defenses: prevent attack code execution

3. Harden executable to detect control hijacking
– Halt process and report when exploit detected
– StackGuard, ShadowStack, Memory tagging (ASan, MTE), …

Transform:

Complete Breach

Denial of service

Dan Boneh

Control Hijacking

Platform Defenses

Dan Boneh

Marking memory as non-execute (DEP)
Prevent attack code execution by marking stack and heap as non-executable

 NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM
– disable execution: an attribute bit in every Page Table Entry (PTE)

• Deployment:
– All major operating systems

• Windows DEP: since XP SP2 (2004) (Visual Studio: /NXCompat[:NO])

• Limitations:
– Some apps need executable heap (e.g. JITs).

– Can be easily bypassed using Return Oriented Programming (ROP)

Dan Boneh

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

args
ret-addr

sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

Dan Boneh

ROP: in more detail
To run /bin/sh we must direct stdin and stdout to the socket:

dup2(s, 0) // map stdin to socket
dup2(s, 1) // map stdout to socket
execve("/bin/sh", 0, 0);

Gadgets in victim code: dup2(s, 1)
ret

dup2(s, 0)
ret

execve("/bin/sh")

Stack (set by attacker): overflow-str 0x408400 0x408500 0x408300

Stack pointer moves up on pop

ret-addr

Dan Boneh

ROP: in even more detail
execve("/bin/sh", 0, 0): implemented using gadgets in victim code:

Stack (set by attacker):

pop rdi
ret

overflow-str 0x408100 0x6F2500 0x408200 0 0 0x408300 59 0x408400

pop rsi
pop rdx
ret

pop rax
ret

syscall
ret

0x408100 0x408200 0x408300 0x408400

new
ret-addr

(rdi ⟵ address
 of “/bin/sh”)

(rsi ⟵ 0)
(rdx ⟵ 0)

(rax ⟵ 59)
syscall #59

5f
c3

5e

c3
5a

58
c3

Dan Boneh

What to do?? Randomization
• ASLR: (Address Space Layout Randomization)
– On load: randomly shift base of code & data in process memory
 ⇒ Attacker does not know location of code gadgets

– Deployment: (/DynamicBase)
• Since Windows 8: 24 bits of randomness on 64-bit processors
• Base of everything must be randomized on load:

– libraries (DLLs, shared libs), application code, stack, heap

• Other randomization ideas (not used in practice):
– Sys-call randomization: randomize sys-call id’s
– Instruction Set Randomization (ISR)

Dan Boneh

A very different idea: kBouncer

Observation: abnormal execution sequence
• ret returns to an address that does not follow a call

Idea: before a syscall, check that every prior ret is not abnormal
• How: use Intel’s Last Branch Recording (LBR)

pop rdi
ret

pop rsi
pop rdx
ret

pop rax
ret

syscall
ret

kernel

kBouncer

Dan Boneh

A very different idea: kBouncer

Inte’s Last Branch Recording (LBR):
• store 16 last executed branches in a set of on-chip registers (MSR)
• read using rdmsr instruction from privileged mode

kBouncer: before entering kernel, verify that last 16 rets are normal
• Requires no app. code changes, and minimal overhead
• Limitations: attacker can ensure 16 calls prior to syscall are valid

pop rdi
ret

pop rsi
pop rdx
ret

pop rax
ret

syscall
ret

kernel

kBouncer

Dan Boneh

Control Hijacking Defenses

Hardening the
executable

Dan Boneh

Run time checking: StackGuard
• Many run-time checking techniques …
– we only discuss methods relevant to overflow protection

• Method 1: StackGuard
– Run time tests for stack integrity.
– Embed “canaries” in stack frames and verify their integrity

prior to function return.

strretsfplocal
top
of

stack
canarystrretlocal canary

Frame 1Frame 2
sfp

Dan Boneh

Canary Types
• Random canary:
– Random string chosen at program startup
– Insert canary string into every stack frame
– Verify canary before returning from function

• Exit program if canary changed. Turns potential exploit into DoS.
– To corrupt, attacker must learn/guess current random string

• Terminator canary: Canary = {0, newline, linefeed, EOF}

– String functions will not copy beyond terminator
– Attacker cannot use string functions to corrupt stack.

Dan Boneh

StackGuard (Cont.)

• StackGuard implemented as a GCC patch
– Program must be recompiled

• Minimal performance effects: 8% for Apache

Dan Boneh

StackGuard enhancement: ProPolice
• ProPolice - since gcc 3.4.1. (-fstack-protector)

– Rearrange stack layout to prevent ptr overflow.

args
ret addr

SFP
CANARY

local string buffers
local non-buffer variables

Stack
Growth pointers, but no arrays

String
Growth

copy of pointer args

Protects pointer args and local
pointers from a buffer overflow

Dan Boneh

MS Visual Studio /GS (BufferSecurityCheck)

Compiler /GS option:
– Combination of ProPolice and Random canary.
– If cookie mismatch, default behavior is to call _exit(3)

Function prolog:
 sub esp, 4 // allocate 4 bytes for cookie
 mov eax, DWORD PTR ___security_cookie
 xor eax, esp // xor cookie with current esp
 mov DWORD PTR [esp+4], eax // save in stack

Function epilog:
 mov ecx, DWORD PTR [esp+4]
 xor ecx, esp
 call @__security_check_cookie@4
 add esp, 4

Protects all stack frames, unless can be proven unnecessary

Dan Boneh

Summary: Canaries are not full proof

• Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

– Some stack smashing attacks leave canaries unchanged: how?

– Heap-based attacks still possible

– Integer overflow attacks still possible

Dan Boneh

Even worse: canary extraction
A common design for crash recovery:
• When process crashes, restart automatically (for availability)
• Often canary is unchanged (reason: relaunch using fork)

Danger:
• canary extraction

byte by byte
ret

addrC A N A R Ylocal
buffer⋯

ret
addrC A N A R Ylocal

buffer⋯

ret
addrC A N A R Ylocal

buffer⋯
ret

addrC A N A R Y
local

buffer⋯

A

B

C

C A

crash

crash

No crash

No crash

Dan Boneh

Similarly: extract ASLR randomness
A common design for crash recovery:
• When process crashes, restart automatically (for availability)
• Often canary is unchanged (reason: relaunch using fork)

Danger:
Extract ret-addr to
de-randomize
app. code ASLR

ret
addrC A N A R Ylocal

buffer⋯

ret
addrC A N A R Ylocal

buffer⋯

ret
addrC A N A R Ylocal

buffer⋯
ret

addrC A N A R Y
local

buffer⋯

A

B

C

C A

crash

crash

No crash

No crash

Dan Boneh

More methods: Shadow Stack
Shadow Stack: keep a copy of the stack in memory
• On call: push ret-address to shadow stack on call
• On ret: check that top of shadow stack is equal to

 ret-address on stack. Crash if not.
• Security: memory corruption should not corrupt shadow stack

Shadow stack using Intel CET: (supported in Windows 10, 2020)

• New register SSP: shadow stack pointer
• Shadow stack pages marked by a new “shadow stack” attribute:

 only “call” and “ret” can read/write these pages

Dan Boneh

ARM Memory Tagging Extension (MTE)
Idea: (1) every 64-bit memory pointer P has a 4-bit “tag” (in top byte)

 (2) every 16-byte user memory region R has a 4-bit “tag”

Processor ensures that: if P is used to read R then tags are equal
– otherwise: hardware exception

Tags are created using new HW instructions:
• LDG, STG: load and store tag to a memory region (used by malloc and free)
• ADDG, SUBG: pointer arithmetic on an address preserving tags

Dan Boneh

Tags prevent buffer overflows and use after free

Example:

(1) char *p = new char(40); // p = 0x B000 6FFF FFF5 1240 (*p tagged as B)

(2) p[50] = ’a’; // B≠7 ⟹ tag mismatch exception (buffer overflow)

(3) delete [] p; // memory is re-tagged from B to E

(4) p[7] = ‘a’; // B≠E ⟹ tag mismatch exception (use after free)

tags (4 bits): 8 7 5BB B 7 5

16 bytes
p+48p

EE E

Note: out of bounds access to p[44] at (2) will not be caught.

Dan Boneh

AddressSanitizer (ASan): a software tool
For every 8 bytes of usable memory,
allocate one byte in shadow to record its allocation status:
• 0: all 8 bytes are allocated (e.g., by malloc)
• 1 ≤ 𝑘 ≤ 7: first 𝑘 bytes are allocated
• negative number: 8 bytes should not be accessed

Compiler places a guard before every memory access. Example:

 ShadowAddr = (Addr >> 3) + ShadowOffset; // address in shadow mem
 if (*ShadowAddr != 0) ReportAndCrash(Addr); // crash if not fully alloc.
 t = *Addr; // program can now read/write address Addr

Shadow memory eats up 1/8th of physical memory ⇒ expensive
• ASan is mostly used when fuzzing a program (e.g., Chrome)

https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/37752.pdf

Usable
Memory

Shadow
Memory

Dan Boneh

AddressSanitizer (ASan): a software tool
Using ASan to detect a buffer overflow on stack or heap:

https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/37752.pdf

Usable
Memory

Shadow
Memory

rz mem1 rz mem2 rz mem3 rz
tags: -1 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 6 -1 0 0 0 0 -1

in shadow
memory

overflow will cause an access to a red zone (rz) ⇒ crash program

after mem2 is freed:

rz mem1 rz freed mem2 rz mem3 rz
tags: -1 0 0 0 0 0 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1

use-after-free at mem2 ⇒ crash program

5×8+4 = 44 bytes 8×8+6 = 70 bytes

Dan Boneh

Control Hijacking Defenses

Control Flow
Integrity (CFI)

Dan Boneh

Control flow integrity (CFI) [ABEL’05, …]

Ultimate Goal: ensure control flows as specified by code’s flow graph

Coarse CFI: ensure that every indirect call and indirect branch
 leads to a valid function entry point or branch target

void HandshakeHandler(Session *s, char *pkt) {
 ...
 s->hdlr(s, pkt)
}

Compile time: build list of possible call targets for s->hdlr

Run time: before call, check that s->hdlr value is on list

Dan Boneh

Coarse CFI: Control Flow Guard (CFG) (Windows 10)

Coarse CFI:
• Protects indirect calls by checking against a bitmask of all valid

function entry points in executable

ensures target is
the entry point of a
function

Dan Boneh

Coarse CFI using EndBranch (Intel) and BTI (ARM)

New instruction EndBranch (Intel) and BTI (ARM):

• After an indirect JMP or CALL:
the next instruction in the
instruction stream must be EndBranch

• If not, then trigger a #CP fault
and halt execution

• Ensures an indirect JMP or CALL can only go
to a valid target address ⇒ no func. ptr. hijack

 (compiler inserts EndBranch at valid locations)

call eax

⦚

⦚

EndBranch

add ebp, 4

⦚

⦚

Dan Boneh

CFG, EndBranch, BTI: limitations
Poor man’s version of CFI:
• Protects indirect calls by checking against a bitmask of all valid

function entry points in executable

ensures target is
the entry point of a
function

• Does not prevent attacker from causing
a jump to a valid wrong function

• Hard to build accurate control
flow graph statically

Dan Boneh

An example
void HandshakeHandler(Session *s, char *pkt) {
 s->hdlr = &LoginHandler;
 ... Buffer overflow over Session struct ...
}

void LoginHandler(Session *s, char *pkt) {
 bool auth = CheckCredentials(pkt);
 s->dhandler = &DataHandler;
}

void DataHandler(Session *s, char *pkt);

Attacker controls
handler

Static CFI: attacker can call
DataHandler to
bypass authentication

Dan Boneh

Cryptographic Control Flow Integrity (CCFI)
(ARM PAC - pointer authentication)

Threat model: attacker can read/write anywhere in memory,
 program should not deviate from its control flow graph

CCFI approach: Every time a jump address is written/copied anywhere in memory:
 compute 64-bit AES-MAC and append to address

 On heap: tag = AES(k, (jump-address, 0 ll source-address))
 on stack: tag = AES(k, (jump-address, 1 ll stack-frame))

Before following address, verify AES-MAC and crash if invalid

Where to store key k? In xmm registers (not memory)

Dan Boneh

Back to the example
void HandshakeHandler(Session *s, char *pkt) {
 s->hdlr = &LoginHandler;
 ... Buffer overflow in Session struct ...
}

void LoginHandler(Session *s, char *pkt) {
 bool auth = CheckCredentials(pkt);
 s->dhandler = &DataHandler;
}

void DataHandler(Session *s, char *pkt);

Attacker controls
handler

CCFI: Attacker cannot
create a valid MAC for
DataHandler address

Dan Boneh

THE END

