Control Hijacking

Control Hijacking:
Defenses

Recap: control hijacking attacks

Stack smashing: overwrite return address or function pointer
Heap spraying: reliably exploit a heap overflow

Use after free: attacker writes to freed control structure,
which then gets used by victim program

Integer overflows

Format string vulnerabilities

The mistake: mixing data and control

* An ancient design flaw:
— enables anyone to inject control signals

e 1971: AT&T learns never to mix control and data

Dan Boneh

Control hijacking attacks

The problem: mixing data with control flow in memory

arguments

i
stack frame

data overwrites
return address

Later we will see that mixing data and code is also the
reason for XSS, a common web vulnerability

Preventing hijacking attacks

Fix bugs:
— Audit software
* Automated tools: Coverity, Infer, ... (more on this next week)

— Rewrite software in a type safe languange (Java, Go, Rust)
 Difficult for existing (legacy) code ...

Platform defenses: prevent attack code execution Transform:

Complete Breach
Harden executable to detect control hijacking ‘

— Halt process and report when exploit detected
— StackGuard, ShadowStack, Memory tagging (ASan, MTE), ...

Denial of service

Control Hijacking

Platform Defenses

Marking memory as non-execute (DEP)

Prevent attack code execution by marking stack and heap as non-executable

NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM
— disable execution: an attribute bit in every Page Table Entry (PTE)

e Deployment:
— All major operating systems
* Windows DEP: since XP SP2 (2004) (Visual Studio: /NXCompat[:NO])

 Limitations:

— Some apps need executable heap (e.g. JITs).

— Can be easily bypassed using Return Oriented Programming (ROP)

Dan Boneh

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

| stack | libc.so

» exec()
printf()

“/bin/sh”

ROP: in more detail

To run /bin/sh we must direct stdin and stdout to the socket:

dup2(s, 0) // map stdin to socket
dup2(s, 1) // map stdout to socket
execve("/bin/sh", 0, 0);

Gadgets in victim code: I e e dup2(s, 1)

Stack (set by attacker):
ret-addr

Stack pointer moves up on pop

Dan Boneh

ROP: in even more detail

execve("/bin/sh", 0, 0): implemented using gadgets in victim code:

0x408100 0x408200 0x408300 0x408400
5f | pop rdi 5e| pop rsi 58| pop rax syscall
c3 | ret 5a pop rdx c3| ret ret
c3| ret

Stack (set by attacker):

overflow-str | 0x408100| 0x6F2500 | 0x408200 0 | O 0x408300 | 59 | 0x408400

new (rdi «<— address (rsi «— 0) (rax «— 59)
ret-addr of “/bin/sh”) (rdx «— 0) syscall #59

Dan Boneh

What to do?? Randomization
ASLR: (Address Space Layout Randomization)

— On load: randomly shift base of code & data in process memory
= Attacker does not know location of code gadgets

— Deployment: (/DynamicBase)

* Since Windows 8: 24 bits of randomness on 64-bit processors

* Base of everything must be randomized on load:
— libraries (DLLs, shared libs), application code, stack, heap

Other randomization ideas (not used in practice):

— Sys-call randomization: randomize sys-call id’s
— Instruction Set Randomization (ISR)

A very different idea: kBouncer

pop rdi J pop rsi J’ pop rax J’ syscall kernel]
ret pop rdx ret : ret

=~
o
o
c
>
(@)
0]
=

ret

Observation: abnormal execution sequence

e ret returns to an address that does not follow a call

Idea: before a syscall, check that every prior ret is not abnormal
e How: use Intel’s Last Branch Recording (LBR)

A very different idea: kBouncer
I:;p rdi J Egg :.;ix J’ E;p rax J’ .:Z:call kernel]
Inte’s Last Branch Recording (LBR):

ret
» store 16 last executed branches in a set of on-chip registers (MSR)

=~
oY
®)
c
>
2]
)
—

* read using rdmsr instruction from privileged mode

kBouncer: before entering kernel, verify that last 16 rets are normal
* Requires no app. code changes, and minimal overhead
* Limitations: attacker can ensure 16 calls prior to syscall are valid

Dan Boneh

Control Hijacking Defenses

Hardening the
executable

Run time checking: StackGuard

* Many run-time checking techniques ...
— we only discuss methods relevant to overflow protection

e Method 1: StackGuard
— Run time tests for stack integrity.

— Embed “canaries” in stack frames and verify their integrity
prior to function return.

Frame 2 Frame 1

top
<<

stack

Dan Boneh

Canary Types

e Random canary:
— Random string chosen at program startup

— Insert canary string into every stack frame

— Verify canary before returning from function
e Exit program if canary changed. Turns potential exploit into DoS.

— To corrupt, attacker must learn/guess current random string

e Terminator canary: Canary = {0, newline, linefeed, EOF}

— String functions will not copy beyond terminator
— Attacker cannot use string functions to corrupt stack.

Dan Boneh

StackGuard (Cont.)

e StackGuard implemented as a GCC patch
— Program must be recompiled

 Minimal performance effects: 8% for Apache

StackGuard enhancement: ProPolice

* ProPolice - sincegcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

String args
Growth ret addr Protects pointer args and local

SFP pointers from a buffer overflow

Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays

copy of pointer args

Dan Boneh

MS Visual Studio /GS (BufferSecurityCheck)

Compiler /GS option:
— Combination of ProPolice and Random canary.
— If cookie mismatch, default behavior is to call _exit(3)

Function prolog: Function epilog:
sub esp,4 //allocate 4 bytes for cookie mov ecx, DWORD PTR [esp+4]
mov eax, DWORD PTR ___security_cookie Xor ecx, esp
Xor eax, esp // xor cookie with current esp call @__security_check_cookie@4
mov DWORD PTR [esp+4], eax // save in stack add esp, 4

Protects all stack frames, unless can be proven unnecessary

Dan Boneh

Summary: Canaries are not full proof

Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

— Some stack smashing attacks leave canaries unchanged: how?
— Heap-based attacks still possible

— Integer overflow attacks still possible

Even worse: canary extraction

A common design for crash recovery:

 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

AANARY d4d crash
Danger:

o
[
®
Q
—
()
—~+
=

* canary extraction
byte by byte

ret
B
A NARY 2ddr crash

ret

C
A NARY 2ddr No crash

ret
cee CA NARY No crash

addr

Dan Boneh

Similarly: extract ASLR randomness

A common design for crash recovery:

 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

AANARY 'Ct [
Danger: addr

Extract ret-addr to
de-randomize

app. code ASLR

ret
B
A NARY 2ddr crash

CANARY 'S [N,
addr

ret
cee CA NARY No crash

addr

Dan Boneh

More methods: Shadow Stack

Shadow Stack: keep a copy of the stack in memory
* Oncall: pushret-address to shadow stack on call

* Onret: checkthattop of shadow stack is equal to
ret-address on stack. Crash if not.

e Security: memory corruption should not corrupt shadow stack

Shadow stack using Intel CET: (supported in Windows 10, 2020)
 New register SSP: shadow stack pointer

* Shadow stack pages marked by a new “shadow stack” attribute:

I”

only “call” and “ret” can read/write these pages

ARM Memory Tagging Extension (MTE)

ldea: (1) every 64-bit memory pointer P has a 4-bit “tag” (in top byte)
(2) every 16-byte user memory region R has a 4-bit “tag”

Processor ensures that: if Pis used toread R then tags are equal
— otherwise: hardware exception

Tags are created using new HW instructions:
 LDG, STG: load and store tag to a memory region (used by malloc and free)
 ADDG, SUBG: pointer arithmetic on an address preserving tags

Tags prevent buffer overflows and use after free

Example: tags (4 bits): 8 B B B 7 7 5 5
P p+48
16 bytes

char *p = new char(40); // p =0xB000 6FFF FFF5 1240 (*p tagged as B)

p[50] ="a’; // B#7 = tag mismatch exception (buffer overflow)
delete [] p; // memory is re-tagged from B to E
p[7] = ‘@’; // B#E = tag mismatch exception (use after free)

Note: out of bounds access to p[44] at (2) will not be caught.

Dan Boneh

AddressSanitizer (ASan): a software tool

For every 8 bytes of usable memory,
allocate one byte in shadow to record its allocation status:

 0: all 8 bytes are allocated (e.g., by malloc)
e 1<k <7: first k bytes are allocated
* negative number: 8 bytes should not be accessed

Shadow
Memory

Usable

Compiler places a guard before every memory access. Example: Memory

ShadowAddr = (Addr >> 3) + ShadowOffset; // address in shadow mem
if (*ShadowAddr !=0) ReportAndCrash(Addr); // crash if not fully alloc.
= *Addr; // program can now read/write address Addr

Shadow memory eats up 1/8t™ of physical memory = expensive
e ASan is mostly used when fuzzing a program (e.g., Chrome)

https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/37752.pdf Dan Boneh

AddressSanitizer (ASan): a software tool

Using ASan to detect a buffer overflow on stack or heap: Shadow
Memory

rz mem3 rz

tags: -1 000004 -1 000000006 -1 0O0OOO -1
in shadow 5x8+4 = 44 bytes 8x8+6 = 70 bytes

memory Usable
overflow will cause an access to a red zone (rz) = crash program Memory

after mem?2 is freed:

mem1 rz freed mem?2 rz mem3 rz
tags: -1 000004 -1 -1-1-1-1-1-1-1-1 O0O0OO0 -1

use-after-free at mem2 = crash program

https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/37752.pdf Dan Boneh

Control Hijacking Defenses

Control Flow
Integrity (CFl)

Control flow integrity (CFl) o,

Ultimate Goal: ensure control flows as specified by code’s flow graph

void HandshakeHandler(Session *s, char *pkt) {

s->hdlr(s, pkt)

Compile time: build list of possible call targets for s->hdir

Run time: before call, check that s->hdlIr value is on list

Coarse CFl: ensure that every indirect call and indirect branch
leads to a valid function entry point or branch target

Dan Boneh

Coarse CFl: Control Flow Guard (CFG) (windows 10)

Coarse CFl:

* Protects indirect calls by checking against a bitmask of all valid

function entry points in executable

rep stosd

mov esi, |esl] =,
mov ecx, esi : Tariif——””—’———————_—i
push 1

call @ guard _check_icall@4 ; gquard check icall(x)
call esi

add esp, 4

Xor eax, eax

ensures target is
the entry point of a
function

Dan Boneh

Coarse CFl using EndBranch (inte) and BTI (arm)

New instruction EndBranch (Intel) and BTI (ARM):

After an indirect JMP or CALL:
the next instruction in the
instruction stream must be EndBranch

If not, then trigger a #CP fault x
and halt execution

Ensures an indirect JMP or CALL can only go ->
to a valid target address = no func. ptr. hijack

(compiler inserts EndBranch at valid locations)

%

call eax

%

EndBranch

%

add ebp, 4

%

CFG, EndBranch, BTI:

2 . C ~ra

limitations

Poor

Pr
fu

rep s

* Does not prevent attacker from causing
a jump to a valid wrong function

e Hard to build accurate control

mov
mov

flow graph statically

push
call
call

valid

of a

@ guara_CNeck_Icariey _guaFU_CHECK_lcall(X}J}
esi

add
Xor

esp, 4
eax, eax

An example

void HandshakeHandler(Session *s, char *pkt) {
s->hdIr = &LoginHandler;

.. Buffer overflow over Session struct ... (— ————

}

void LoginHandler(Session *s, char *pkt) {
bool auth = CheckCredentials(pkt);

s->dhandler = &DataHandler;
}

void DataHandler(Session *s, char *pkt);

Attacker controls
handler

static CFl: attacker can call

DataHandler to
bypass authentication

Dan Boneh

Cryptographic Control Flow Integrity (CCFl)
(ARM PAC - pointer authentication)

Threat model: attacker can read/write anywhere in memory,

program should not deviate from its control flow graph

CCFl approach: Every time a jump address is written/copied anywhere in memory:
compute 64-bit AES-MAC and append to address

On heap: tag = AES(k, (jump-address, 0Il source-address))

on stack: tag= AES(k, (jump-address, 1 Il stack-frame))
Before following address, verify AES-MAC and crash if invalid

Where to store key k? In xmm registers (not memory)

Dan Boneh

Back to the example

void HandshakeHandler(Session *s, char *pkt) {
s->hdIr = &LoginHandler;
... Buffer overflow in Session struct ... <—

Attacker controls

} handler
void LoginHandler(Session *s, char *pkt) { CCEl: Attacker cannot
bool auth = CheckCredentials(pkt); create a valid MAC for
DataHandler add
s->dhandler = &DataHandler; ararancrer agaress

}

void DataHandler(Session *s, char *pkt);

Dan Boneh

THE END

