CS155: Computer Security Spring 2023

Project #1

Due: Part 1: Thursday, April 13 - 11:59pm,
Parts 2 and 3: Thursday, April 20 - 11:59pm.

Submit by Gradescope

The goal of this assignment is to gain hands-on experience finding vulnerabilities in code and
mounting buffer overflow attacks. In Parts 1 and 2, you are given the source code for five exploitable
programs which are to be installed with setuid root in a virtual machine we provide. You'll
have to identify a vulnerability (buffer overflow, double free, format string vulnerability, etc.) in
each program. You’ll write an exploit for each that executes the vulnerable program with crafted
argument, causing it to jump to an exploit string. In each instance, the result will yield a root shell
even though the attack was run by an unprivileged user. In Part 3, you will use a fuzzer to find
a vulnerability in a program called bsdtar, part of a widely used library called libarchive. You’ll
download and build the vulnerable version of libarchive in your VM and then run the fuzzer to find
an input that causes the program to crash.

The Environment

You'll run your exploits in a virtual machine (VM) emulated using QEMU. This serves two purposes.
First, the vulnerable programs contain real, exploitable vulnerabilities and we strongly advise
against installing them with setuid root on your machine. Second, everything from the particular
compiler version, to the operating system and installed library versions will affect the exact location
of code on the stack. The VM provides an identical environment to the one in which the assignment
will be tested for grading.

Launching your VM

To launch your VM, you will first need to install QEMU. Follow the instructions on QEMU’s website
here (https://www.qgemu.org/download/). MacOS users will need to first install Homebrew. You
can find instructions on doing that here (https://brew.sh/).

You can then launch your VM by running the included run_gemu.sh script. It may take a
minute or two for your VM to launch. Once it does, you should see a login prompt in the terminal
where you launched the VM. You can login and use your VM from that terminal. Your VM has a
single user with the username “user” and the password “cs155”. Alternatively, you can use ssh to
log into your VM. You can use the included ./ssh_to_gemu.sh script or run

$ ssh -p 5555 user@localhost

You may have a smoother terminal experience using your VM over ssh because QEMU doesn’t use
your entire terminal window.

https://www.qemu.org/download/
https://brew.sh/

Using your VM
The VM is configured with Debian GNU /Linux 11 (bullseye), with ASLR (address randomization)

turned off. It has a single user account “user” with password “cs155”, but you can temporarily
become the root user using sudo. The exploits will be run as “user” and should yield a command
line shell (/bin/sh) running as “root”. The VM comes with a set of tools pre-installed (curl, wget,
openssh, gce, vim etc), but feel free to install additional software. For example, to install the emacs
editor, you can run:

$ sudo apt-get install emacs

When you first run the VM, it will have an OpenSSH server running so you can login from your
host machine as well as transfer files using, e.g., ssh, scp, and sshfs. The VM already contains
the starter code in the proj1 directory.

To shutdown your VM, you can run:

$ sudo systemctl poweroff

Parts 1 and 2

Parts 1 and 2 ask you to develop exploits for five different vulnerable target programs.

Targets

The targets/ directory in the assignment tarball (which has already been copied to the VM for
you) contains the source code for the vulnerable targets as well as a Makefile for building and
installing them on the VM. Specifically, to install the target programs, as the non-root “user”:

$ cd targets
$ make
$ sudo make install

This will compile all of the target programs, set the executable stack flag on each of the resulting
executables, and install them with setuid root in /tmp.

Your exploits must assume that the target programs are installed in /tmp/ such as /tmp/target1,
/tmp/target2, etc.

Note: When you reboot your machine, files in the /tmp directory will be automatically deleted.
This means you need to run sudo make install in the projl/targets directory to reinstall the
targets.

Exploit Skeleton Code

The xploits/ directory in the assignment tarball contains skeleton code for the exploits you’ll
write, named xploitl.c, xploit2.c, etc., to correspond with the targets. Also included is the
header file shellcode.h, which provides a shellcode in the static variable

static const char* shellcode.

targetd

The fifth target has had its stack marked as non-executable. This means that you will not be able
to jump to a shellcode that you've placed in memory. You will need to use Return Oriented Pro-
gramming (ROP) to attack this target. For your convenience, you can use the ./find gadgets.py
script to locate gadgets in this target. The script will search through a given executable and find
every potential gadget in it. It’s your job to use those gadgets to exploit target5.

Part 3

In Part 3 you’ll learn how to find security vulnerabilities using a fuzzer called American Fuzzy Lop.
Fuzzing is a technique for finding vulnerabilities in a program by running the program on random
data until it crashes. We will be using afl-fuzz, one of the most successful and widely-used fuzzers
currently available. afl-fuzz has already been installed on the VM. You can read more about afl-fuzz
and how it works at http://lcamtuf.coredump.cx/afl/.

http://lcamtuf.coredump.cx/afl/

Fuzzing libarchive

You will be fuzzing libarchive (https://www.libarchive.org/), a widely used archive and com-
pression library. It provides a program called bsdtar that offers similar functionality to the more
common GNU tar program. For example, you can use bsdtar to extract a .tar.gz file in the same
way as regular tar:

$ bsdtar -xf <some-file>.tar.gz
In the proj1/fuzz/ directory, download and extract the source code for libarchive version 3.1.2:

$ curl -0 http://www.libarchive.org/downloads/libarchive-3.1.2.tar.gz
$ tar -xf libarchive-3.1.2.tar.gz

This should give you a directory called libarchive-3.1.2/. In that directory, run:
$ CC=afl-clang ./configure --prefix=$HOME/projl/fuzz/install

This will configure libarchive so that it will be built using the afl-fuzz compiler, afl-gcc, and so
that it will install itself in the install/ directory rather than system-wide. You can then build
and install libarchive, including bsdtar:

$ make
$ make install

(Note that we are not using sudo.) After this, bsdtar should be installed under install/bin/.
The fuzz/testcases/ directory contains a seed testcase that afl-fuzz will modify to try to crash
bsdtar. Run afl-fuzz on this testcase by running the following command from the fuzz/ directory:

$ afl-fuzz -i testcases -o results install/bin/bsdtar -0 -xf @@

This command instructs afl-fuzz to run bsdtar and supply the arguments -0 -xf @@. The -0
(capital-O, not numeral-0) option tells bsdtar to not write any files to disk. afl-fuzz will replace
@@ with the name of the input to test for a crash, so the -xf @@ part will cause bsdtar to try to
extract the input file generated by afl-fuzz. The result is that afl-fuzz will generate a bunch of test
cases based on the seeds in the testcases/ directory and then run bsdtar on each generated file
until bsdtar crashes.

The fuzzer may run for several minutes before finding a crash. Once it does, hit Ctrl-C to stop
AFL.

Write-up

Spend a few minutes investigating the crash. Use GDB to get a backtrace at the time of the crash.
Try to figure out what the vulnerability is in the source code.

In the fuzz/README file, include your backtrace from GDB and briefly describe the vulnerability
(two or three sentences; no more than 200 words).

https://www.libarchive.org/

Deliverables

The assignment is divided into three parts:

e Part 1 consists of targets 1 and 2.

e Part 2 consists of the other three targets.

e Part 3 (which you will submit together with Part 2) consists of fuzzing a real-world program

(bsdtar) to find a vulnerability.

For each submission, you’ll need to provide a gzipped tarball (.tar.gz) generated by running
make submission from the top-level directory of the assignment source (proj1/). This tarball will
contain the contents of the sploits/ directory, the crashes found during fuzzing, the README in
the fuzz/ directory, and ID.csv. Make sure that if you extract your submission tarball:

1.

In the extracted xploits/ directory, running make with no arguments should yield xploit1
through xploitb executables in the same directory.

. In the extracted fuzz/ directory, running the vulnerable version of bsdtar on any of the

crashing testcases should reproduce the crash.

. In the extracted fuzz/ directory, there should be a README file that describes the vulner-

ability found via fuzzing.

. The tarball must include the file ID.csv which conatins a comma-separated line for each

group member with your SUNet ID, last name, first name (order matters). The top-level
directory already contains such a file, so you just need to modify it.

NOTE: Due to the size of the class, the correctness of your submission will be graded primarily
by script. As a result, following the the submission format is important. We really, really want to
give you full credit! Help us help you!

Instructions for submitting the tarball will be posted on Piazza.

Hints

1.

gdb is an incredibly helpful tool for this assignment. CS 107’s guide to gdb is a great resource.
https://web.stanford.edu/class/cs107/resources/gdb

. If you run gdb, and the target crashes, you will need to relaunch gdb to run the xploit

again. This is because the gdb’s run command will attempt to restart the target rather than
the xploit.

. The gdb command info frame gives you useful information about the current stack frame.

Late Policy

The general course policy on late submissions applies to this assignment. The policy is details in
the course overview on the website: https://cs155.stanford.edu/info.html

https://web.stanford.edu/class/cs107/resources/gdb
https://cs155.stanford.edu/info.html

Setup: Set-by-step

Download the VM from https://crypto.stanford.edu/cs155/projl-vm.tar.gz and extract.
The tarball contains a file disk.img, which is an QEMU QCOW Disk Image.

Launch the machine using the included run_gemu. sh script. The script just invokes the following
line

gemu-system-x86_64 disk.img -m 2G -nic user,hostfwd=tcp::55565-:22 -nographic

The -m 2G option launches the VM with 2 Gigabytes of memory. The -nic user,hostfwd=tcp::5555-:22
option forwards internet traffic on your computer’s port 5555 to the VM’s port 22. This al-

lows you to ssh into your VM. The -nographic option make QEMU forward the output of your

VM to your terminal. You can launch your VM without this option. If you do, QEMu will

create a new window for your VM. See QEMU’s documentation for more information on this.
https://www.qgemu.org/docs/master/

Once the VM has booted, login with username “user” and password “cs155”. Your home
directory will now contain the folder “proj1” which contains the targets and starter code for the
project. The VM should be configured to forward traffic on your machine’s port 5555 to the VM’s
port 22. This lets you ssh into your VM with the following

$ ssh -p 5555 user@localhost
Once logged in, build and install the targets:

$ cd projil/targets
$ make && sudo make install
Password: cs155

Write, build and test your exploits:

$ cd ../xploits

...edit,test...
$ make
$./xploitl

If at any point you’d like a fresh copy of the starter code, you can download the assignment
tarball from https://cs155.stanford.edu/hw_and_proj/projl.tar.gz and extract it:

$ wget https://cs155.stanford.edu/hw_and_proj/projl.tar.gz
$ tar xzf projl.tar.gz

Then repeat the build and installation steps above.

https://crypto.stanford.edu/cs155/proj1-vm.tar.gz
https://www.qemu.org/docs/master/
https://cs155.stanford.edu/hw_and_proj/proj1.tar.gz

