CS 1585: Spring 2017
June 8, 2017

CS 155 Final Exam

This exam is open book and open notes. You may use course notes and documents that you
have stored on a laptop, but you may NOT use the network connection on your laptop in any
way, especially not to search the web or communicate with a friend. You have 2.5 hours.

Print your name legibly and sign and abide by the honor code written below. All of the
intended answers may be written in the space provided. You may use the back of a page for
scratch work. If you use the back side of a page to write part of your answer, be sure to mark
your answer clearly.

The following is a statement of the Stanford University Honor Code:
A. The Honor Code is an undertaking of the students, individually and collectively:

(1) that they will not give or receive aid in examinations; that they will not give or
receive unpermitted aid in class work, in the preparation of reports, or in any other
work that is to be used by the instructor as the basis of grading;

(2) that they will do their share and take an active part in seeing to it that others as
well as themselves uphold the spirit and letter of the Honor Code.

B. The faculty on its part manifests its confidence in the honor of its students by refraining
from proctoring examinations and from taking unusual and unreasonable precautions
to prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far
as practicable, academic procedures that create temptations to violate the Honor Code.

C. While the faculty alone has the right and obligation to set academic requirements, the
students and faculty will work together to establish optimal conditions for honorable
academic work.

I acknowledge and accept the Honor Code.

(Signature)

(SUNet ID) (Print your name, legibly!)

Prob | #1 | #2 | #3 | #4 | #5 | #6 || Total

[] GRADUATING? Score

Max | 10 [20 | 10 | 20 | 15 | 20 95

1. (10points) .

For each question, please write T or F in the space provided. No explanation needed.

()

— ()

(©)

— ()

(e)

()

— Q)

— ()

— O

—

Ingress filtering at the ISP, if implemented universally, is a way
to prevent a DoS attack using packets with a spoofed source IP
address.

The CSP directive upgrade—insecure-requests tells the browser
to use HTTPS for all in-site resource requests, regardless of the
protocol in the URL.

DDoS attacks often use covert channels.

Protecting an application using ASLR requires recompiling that
application (even if the executable is position independent).

Fuzzing tools like af1-fuzz are guaranteed to find at least one
vulnerability.

Checking the Referer header is a robust defense against CSRF
attacks.

Subresource integrity (SRI) is not needed if the data is transferred
over HTTPS.

Stateful firewalls are a good way to protect a high speed link be-
tween two large data centers.

On i0S, copy-and-paste is a safe way for a user to copy a password
from a password manager app to another app. Recall that the
copy-and-paste buffer is readable by all installed applications.

Two containers running on the same system are far better isolated
from each other than two VMs running on the same system.

True or False

2. (20p0INtS) ... Questions From All Over With a Short Answer

(a)

(o)

(4 points) Consider a Web site xyz.com that implements a phone dialer. When
the user enters a phone number to call, the browser opens a new window containing
the following Javascript that defines a postMessage event listener:

function receiveMessage (event) {
// event.data i1s a phone number from sender
initiatePhoneCallTo (event.data);

}

window.addEventListener ("message", receiveMessage, false);

The parent page then sends a postMessage to this window to initiate the call. This
activates the receiveMessage function which makes the call. Explain how an evil
web site can cause a visitor to initiate phone calls to arbitrary phone numbers.
Assume the visitor is logged in to her xyz . com account, but does not have xyz.com
open in a window.

(4points) Continuing with the previous question, if the function receiveMessage
started with the following line:

if (event.origin !== "https://www.xyz.com") return;

Would this eliminate the problem you identified in part (20)? Recall that event .origin

is the true origin that initiated the postMessage call.

(©)

(d)

(e)

(4 points) 'When running a setuid root program under GDB, the program does not
run with root privileges. Consider a patch to the Linux kernel that makes it so that
if a user debugs a setuid root program with GDB, the program being debugged runs
with root privileges. Is this safe? If so, explain why. If not, describe an attack that
is made possible by this change.

(4 points) In the DDoS lecture we discussed the Github attack, where a popu-
lar site was used to mount a DDoS on Github by injecting certain Javascript into
every response from the popular site. Suppose Github were protected by an anti-
DDoS service like Google Project Shield. How could Google have blocked the DDoS
requests? One approach is to only allow incoming requests from existing Github
customers. Suggest one way that Google could implement this.

(4 points) A common approach to software update is as follows: the software ven-
dor digitally signs the update file using a secret signing key and posts the update
along with the signature on a public server. Every client periodically checks the
public server. When an update is found, the client downloads the update file, checks
the signature, and installs the update if the signature is valid. Explain why this
can be insecure. Hint: consider a client running version n. Version n + 1 has a
known vulnerability which is fixed in version n + 2. Version n + 2 is available for
download on the update server.

3. (JOPOINS) + e Jump-Oriented Programming

Elizabeth is attacking a buggy application. She has found a vulnerability that allows
her to control the values of the registers ecx, edx, and eip, and also allows her to
control the contents of memory locations 0x9000 to 0x9014. She wants to use return-
oriented programming, but discovers that the application was compiled without any ret
instructions! Nonetheless, by analyzing the application, she learns that the application
has the following code fragments (gadgets) in memory:

0x3000: add edx, 4 ; edx = edx + 4
Jmp [edx] ; Jump to xedx
0x4000: add edx, 4 ; edx = edx + 4
mov eax, [edx] ; eax = xedx
Jjmp ecx ; Jump to ecx
0x5000: mov ebx, eax ; ebx = eax
Jjmp ecx ; Jump to ecx
0x6000: mov [eax], ebx ; *eax = ebx

; don’t worry about what happens after this

Show how Elizabeth can set the values of the registers and memory so that the vulner-
able application writes the value 0x2222 to memory address 0x8888.

0x9000

0x9004
ecx

0x9008
edx

0x900c
eip 0x4000

0x9010

0x9014

Recall that eip is the instruction pointer. It holds the address of the next instruction to
execute. ecx and edx are general purpose registers.

A, (Q0DOINS) et Control hijacking

(a)

(o))

(&)

(5 points) In class we explained how ProPolice, an enhancement to stack canaries,
re-orders local variables on the stack so that pointers are always allocated before
string buffers in a stack frame (i.e. local pointers are allocated at a lower address
in memory). Give example code that is vulnerable when the basic stack canaries
architecture is used (when local variables are allocated in the same order as in
the code), but is not vulnerable if this re-ordering is done. Explain why your code
satisfies these properties.

(4 points) Intel recently introduced a new instruction called endbranch. The
instruction does nothing (a NOP). However, whenever the processor executes an in-
direct jump (e.g., Jmp ecx as in Question 3) or an indirect call, the immediate next
instruction in the instruction stream must be an endbranch. If not, the proces-
sor signals a protection exception that terminates the process. What exploitation
technique is endbranch intended to prevent and how? Make sure to explain where
you would place endbranch instructions in the code and why you would place them
there.

(2 points) In homework #1 we discussed the shadow stack, a technique used to
protect return addresses on the stack. Intel recently introduced hardware support
for this. The shadow stack is stored in memory pages marked by a new “shadow

stack” attribute. The stack is addressed by a new register called the shadow stack
pointer (SSP). When the processor executes a call instruction it pushes the return
address onto the regular stack (as usual) and also onto the shadow stack (new).
When ret is executed, the processor compares the return address on the regular
stack with the value stored at the top of the shadow stack. If the values differ, the
processor signals a protection exception. Memory pages that are marked as shadow
stack cannot be read or written by standard data instructions like mov (which is
used to read and write to memory). Only call and ret instructions read and write
to the shadow stack. Note that only return addresses are written to the shadow
stack; arguments are not.

Why is it important that mov instructions cannot write to the shadow stack?

(d) (5points) Give example code that is vulnerable to a buffer overflow when the full
stack canaries technique is implemented (including re-ordering as in part (a)), but
is not vulnerable to return address smashing when a shadow stack is used (without
canaries).

(e) (4 points) If Intel’s shadow stack is used, is there any value in also using stack
canaries? Justify your answer.

B, (I5D0INTS) oot Timing attacks on HTTPS

Recall that HTTPS does not hide the length of an HTTP request or response. A number
of attacks, such as CRIME and BREACH, show that the lengths of HTTPS responses
from the server can completely expose the contents of these responses. Clearly a network
attacker can measure the response length by simply observing network traffic. However,
this requires monitoring the server’s or client’s network. In this question we show how
a remote Web attacker can measure the server’s response length.

Suppose Alice is logged into her bank. Alice then visits evil.com who sends back the
following Javascript:

fetch (" https://bank.com/account’) .then (
function (response) { Tl = performance.now(); })

This causes Alice’s browser to issue a GET request for https://bank.com/account.
Her browser establishes a TCP connection to the bank, sets up an HTTPS session, sends
the GET request (including Alice’s cookies), and waits for the response. The function on
the second line is called when the first byte of the response is received. T1 records the
time accurate to the millisecond.

(a) (2points) Can evil.comread the contents of the response? Justify your answer.

(b) (2 points) Additional Javascript from evil.com can record the time T2 when the
last byte of the response is received. Let Delta = T2 - T1. Suppose the maxi-
mum packet size (called MSS) is 1460 bytes, and the server sends ten packets in se-
quence before stopping to wait for ten ACK packets from the client. Once the server
receives the ten ACK packets it sends another ten packets, waits again, and so on.
Explain how evil.com can tell if the response size is more than 10 x 1460 bytes, or
less. You may assume that the bank . com site has public objects, such as images, of
different sizes. (To keep things simple, we are ignoring the bytes generated by the
TCP and TLS handshakes).

(C) (4 points) Next, suppose that the GET request for account data takes an argu-
ment, so that the request looks like:

https://bank.com/account ?request ID=RID

where RID is an arbitrary string provided by evil . com. The response from bank.com
contains the given RID, but the response is otherwise unaffected by the value of
RID. Explain how evil.com can use this reflected argument to determine the ex-
act response size from bank . com.

As mentioned earlier, your answer enables a remote evil.com site to use the
BREACH or CRIME attacks to then completely decrypt the server’s response.

(d) (3points) How would you prevent a Web attacker from learning the exact response
length using part (c) if you were designing bank . com?

(e) (4 points) Looking more generally at the correct use of HTTPS, suppose that a
page loaded over HTTP loads a login iframe as

<iframe src="https://site.com/login"> </iframe>

Can an active network attacker steal the password entered into the login frame?
Justify your answer.

6. (20POINIS) oot Android fragment injection

Android apps are composed of application components of different types, including activ-
ities. An activity defines a single Ul such as a browsing window or a preferences screen.
Activities can contain fragments, which are implemented by the android.app.Fragment
class and provide a part of a UL

A fragment (or full activity) can be exported by setting an export tag android:exported="true"
in the app manifest section for this fragment. This allows the fragment to be invoked

by any other app. An app invokes a fragment by sending an intent. An intent may in-

clude extra data fields (called Intent ‘extras’), passed inside a bundle (implemented by

the android.os.Bundle class). It is easy for an app to create a bundle and set its data

fields before sending an intent.

A PreferenceActivity provides a way for apps to show preferences to the user. In certain
versions of Android, any app that extends the PreferenceActivity class using an
exported activity is vulnerable to a fragment injection attack. The vulnerability affects
many apps, including Settings, Gmail, Google Now, DropBox and Evernote. The Settings
app is shipped on every Android device to allow users to change user settings such as the
device locking password. Assume throughout this problem that we are in a vulnerable
version of Android.

An intent sent to a PreferenceActivity may contain two extra data fields that are espe-
cially interesting: PreferenceActivity.EXTRA_SHOW_FRAGMENT and
PreferenceActivity.EXTRA_SHOW_FRAGMENT _ARGUMENTS.

When the PreferenceActivity receives an intent with these data fields, it dynamically
loads the EXTRA_SHOW_FRAGMENT and passes it the EXTRA_SHOW_FRAGMENT _ARGUMENTS.
In other words, an exported fragment present in the system may be loaded by a mali-
cious app and passed any arguments. The loaded fragment will run in the context of the
vulnerable app, will have the same privileges and have access to its private data.

(a) (3points) Suppose app A exports a PreferenceActivity as described in the problem
statement and app B passes A an EXTRA_SHOW_FRAGMENT. Which app’s permissions,
A or B, govern the behavior of the dynamically loaded fragment? Explain your
reasoning succinctly.

(b) (6points) The main Settings activity of the Settings app extends
PreferenceActivity. One fragment of the Settings activity is
ChooselockPassword$ChooseLockPasswordFragment. This fragment is de-
signed to be loaded under the ChooselL.ockPassword class which is not exported.
Therefore, the authors of ChooselLockPasswordFragment did not expect to have
to check for malicious input. This fragment has an argument confirm_credentials
that can be set to true or false when called to change the device pin code. When this
flag is t rue, the caller must supply the current pin code in order to change it.

10

(1) (3 points) How can a malicious app load ChooseLockPasswordFragment
and provide arbitrary input to it?

(i1) (3 points) How would you design an app to change the user’s pin code to
123456, using the method you described in part (a)?

(c) 2 points) Assuming dynamic loading is implemented using the Java Reflection
API, how might an information-flow tool determine that there is a potential vulner-
ability in Settings (e.g., untrusted input source flows to sensitive sink)?

(d) (3 points) Fragment injection was addressed in KitKat, which added a method
PreferenceActivity.isValidFragment that is called before a fragment is dy-
namically instantiated by PreferenceActivity. What should be the default imple-
mentation of this method?

11

