
Dan Boneh

Crypto Concepts

Symmetric encryp/on,
Public key encryp/on,
and TLS

Cryptography
Is:
– A tremendous tool for protecting information
– The basis for many security mechanisms

Is not:
– The solution to all security problems
– Reliable unless implemented and used properly
– Something you should try to invent yourself

Dan Boneh

Goal 1: Secure communication

no eavesdropping
no tampering

(protecting data in motion)

Transport Layer Security / TLS
Standard for Internet security
– Goal: “... provide privacy and reliability between two

communicating applications”

Two main parts
1. Handshake Protocol: Establish shared secret key

using public-key cryptography

2. Record Layer: Transmit data using negotiated key

Our starting point: Using a key for encryption and integrity

Dan Boneh

Goal 2: protected files

File system

File 1

File 2

Alice Alice

No eavesdropping
No tampering

(protecLng data at rest)

Building block: symmetric cipher

E, D: cipher k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext n: nonce (non-repeating)

Encryption algorithm is publicly known
⇒ never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Use Cases
Single use key: (one time key)

• Key is only used to encrypt one message
• encrypted email: new key generated for every email

• No need for nonce (set to 0)

Multi use key: (many time key)
• Key is used to encrypt multiple messages or multiple files

• TLS: same key used to encrypt many frames
• Use either a unique nonce or a random nonce

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:
Å

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

Decryption: D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m

One Time Pad (OTP) Security
Shannon (1949):

– OTP is “secure” against one-Lme eavesdropping

– without key, ciphertext reveals no “informaLon”
about plaintext

Problem: OTP key is as long as the message

Stream ciphers (single use key)

Problem: OTP key is as long as the message
Solution: Pseudo random key -- stream ciphers

Example: ChaCha20 (one-time if no nonce) key: 128 or 256 bits.

key

PRG

messageÅ

ciphertext

c ¬ PRG(k) Å m

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

c1 ¬ m1 Å PRG(k)
c2 ¬ m2 Å PRG(k)

Eavesdropper does:

c1 Å c2 ® m1 Å m2

Enough redundant information in English that:
m1 Å m2 ® m1 , m2

What if want to use
same key to encrypt
two files?

Block ciphers: crypto work horse

E, D CT Block
n bits

PT Block
n bits

Key k Bits

Canonical examples:
1. 3DES (old): n= 64 bits, k = 168 bits
2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by IteraHon

R(k,m): round function

for AES128: 10 rounds, AES256: n=14 rounds

key k

key expansion

k1 k2 k3 kn
R(

k 1
, ×

)

R(
k 2

, ×
)

R(
k 3

, ×
)

R(
k n

, ×
)

m c

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc, aesenclast: one round of AES

aesenc xmm1, xmm2 (result written to xmm1)

• aesdec, aesdeclast: one round of AES
• aeskeygenassist: do AES key expansion

⟹ more than 10x speedup over a software AES
⟹ better security: all AES instructions are constant time

round keystate

Incorrect use of block ciphers
Electronic Code Book (ECB):

Problem:
– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Dan Boneh

In pictures

CTR mode encryp/on (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
Å

c[0] c[1] … c[L]

IV

IV
ciphertext

Why is this secure for multiple messages? See the crypto course (cs255)

A Warning
eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.
CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kmessage m tag

Generate tag:
tag ¬ S(k, m)

Verify tag:
V(k, m, tag) = `yes’

?

Construc/on: HMAC (Hash-MAC)
Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

– Standardized method: HMAC

S(k, msg) = H(kÅopad ‖ H(kÅipad ‖ msg))

Why is this MAC construction secure?

… see the crypto course (cs255)

Combining MAC and ENC (Auth. Enc.)
Encryption key kE. MAC key = kI

Option 1: (SSL)

Option 2: (IPsec, TLS 1.3)

Option 3: (SSH)

msg m msg m MAC
enc kEMAC(kI, m)

msg m
Enc kE

MAC
MAC(kI, c)

msg m
enc kE

MAC
MAC(kI, m)

always
correct

AEAD: Auth. Enc. with Assoc. Data

AES-GCM: CTR mode encryption then MAC
(MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD:

encrypted dataassociated data
authen=cated

encrypted

Example AES-GCM functions
int encrypt(

unsigned char *key, // key
unsigned char *iv, int iv_len, // nonce
unsigned char *plaintext, int plaintext_len, // plaintext
unsigned char *aad, int aad_len, // assoc. data

unsigned char *ciphertext) // output ct

int decrypt(// error if invalid MAC on (aad, ciphertext)
unsigned char *key, // key
unsigned char *ciphertext, int ciphertext_len, // plaintext
unsigned char *aad, int aad_len, // assoc. data

unsigned char *plainrtext) // output pt

Summary
Shared secret key:
• Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]

• One-time key: ex: a stream cipher
• Many-time key: ex: AES-CTR with a unique/random nonce

Integrity: HMAC

Authenticated encryption: encrypt-then-MAC using AES-GCM

Dan Boneh

Crypto Concepts

encryption and
compression problems

Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

• Does not work … ciphertext looks like a random string

Option 2: first compress and then encrypt
• Used in many Internet protocols (TLS, HTTP, QUIC, …)

• Trouble …

Trouble … [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

POST /bank.com/buy?id=goog
Cookie: uid=jhPL8g69684rksfsdg

Second message compresses bejer than first:
network observer can disLnguish the two messages!

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Javascript can issue requests to Bank,
but cannot read Cookie value

(simplified)

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=a
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=b
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=j
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter
⇒ first character of Cookie is “j”

Even worse: the CRIME aTack [RD’2012]

POST /bank.com/buy?id=uid=ja
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter
⇒ 2nd character of Cookie is “h”

Even worse: the CRIME aTack [RD’2012]

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Recover entire cookie after
256 × |Cookie| tries

Takes several minutes (simplified)

What to do?
• Disable compression ☹

• Use a different compression context for parts
under Javascript control and parts that are not

• Change secret (Cookie) aqer every request

Does not eliminate inherent leakage due to compression

Dan Boneh

Crypto Concepts

Public key cryptography

(1) Public-key encrypHon
Tool for managing or generating symmetric keys

• E – Encryption alg. PK – Public encryption key

• D – Decryption alg. SK – Private decryption key

Algorithms E, D are publicly known.

Alice1
Em1 E(PK, m1)=c1 Bob

D
c D(SK,c)=m

Alice2
Em2 E(PK, m2)=c2

Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ×) : a one-way function
– Computing y = F(pk, x) is easy
– One-way: given random y, finding x s.t. y = F(pk,x) is difficult

3. Algorithm F-1(sk, ×) : Invert F(pk, ×) using trapdoor SK

F-1(sk, y) = x

Example: RSA
1. KeyGen: generate two equal length primes p, q

set N ¬ p×q (3072 bits » 925 digits)

set e ¬ 216+1 = 65537 ; d ¬ e-1 (mod j(N))

pk = (N, e) ; sk = (N, d)

2. RSA(pk, x) : x ® (xe mod N)
Inverting this function is believed to be as hard as factoring N

3. RSA-1(pk, y) : y ® (yd mod N)

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x Î domain(F) and set k ¬ H(x)

– c0 ¬ F(pk, x) , c1 ¬ E(k, m) (E: symmetric cipher)

– send c = (c0, c1)

Decrypt(sk, c=(c0,c1)): x ¬ F-1(sk, c0) , k ¬ H(x) , m ¬ D(k, c1)

security analysis in crypto course (cs255)

c0 c1

(2) Digital signatures
Goal: bind document to author
• Problem: ajacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutaLon (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

Digital signatures
Goal: bind document to author
• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

• Only someone who knows sk can sign a message m

• Anyone who has pk can verify a (msg, signature) pair

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and
proof “I am Bob”

Browser
Alice

skCA
check
proofissue Cert with skCA :

Bob’s
key is pkBob’s

key is pk

generate
(sk,pk)

Server Bob

pkCA

verify
cert

Bob uses Cert for an extended period (e.g. one year)

pkCA

Dan Boneh

Sample certificate:

Signature schemes used in the real world

RSA signature scheme:
• Fast to verify, but signatures are long
• Often used in certificates

ECDSA, Schnorr, BLS signature schemes:
• Faster to generate signature and more compact than RSA
• Used everywhere, other than web certificates

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

Example: Diffie-Hellman key exchange.
• Only secure against eavesdropping
• TLS 1.3: enhances Diffie-Hellman key exchange

⟹ security against an active attacker

attacker ??
key key

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…]
CertVerify: Enc[SigS(data)] , Finished

Client Server

secret
key

Finished

session-keys ¬ HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some idenPty protecPon: cerLficates are sent encrypted

One sided authenPcaPon:
– Browser idenLfies server using server-cert
– TLS has support for mutual authenLcaLon

• requires a client pk/sk and client-cert

Gmail

Summary: crypto concepts
Symmetric cryptography:

AuthenXcated EncrypXon (AE) and message integrity

Public-key cryptography:
Public-key encrypXon, digital signatures, key exchange

CerXficates: bind a public key to an idenXty using a CA
– Used in TLS to idenXfy server (and possibly client)

Modern crypto: goes far beyond basic encrypXon and signatures

