Mobile Security

CS155 Computer and Network Security

Stanford University

Mobile is Big!

Around 2.5B actively Android users. Users spend more time on
mobile than on desktops today.

Growth in Digital Media Time Spent in Minutes (Billions) % Change

vs. Jun 20113
1,448 1,481 +54%
1,199
964
864
621) +111%
Mobile App
Desktop 481 492
Jun-2013 Jun-2014 Jun-2015 Jun-2016

@ COMSCORE Source: comScore Media Metrix Multi-Platform & Mobile Metrix, U.S. oo ke Py

Mobile Market Share

perating System 2017 2017 Market 2016 2016 Market
Share (%) Share (%)

Units Units
lAndroid 1,320,118.1 85.9 1,268,562.7 84.8
0S 214,924.4 14.0 216,064.0 14.4
Other OS 1,493.0 0.1 11,332.2 0.8
Total 1,536,535.5 100.0 1,495,959.0 100.0

Source: Gartner (February 2018)

Global Bias in Market Share

10S
" Android

What’s Valuable on Phones?

Mobile Specific
— |dentify location
— Record phone calls

— Log SMS (What about 2FA SMS?)
— Send premium SMS messages

Traditional (Similar to Desktop PCs)

- Steal personal data (e.g., contact list, email, messaging, banking/financial
information, private photos)

- Phishing
- Malvertising
- Join Bots

Bring Your Own Device (BYOD)

Many companies are now allowing users to bring/use their own
personal devices — company data resides on devices

In the past, enterprise workstations were centrally managed.

How do you handle when users want to bring their own devices”?

Unique Threat Model (Physical)

Powered-off devices under complete physical control of an adversary
(including well-resourced nation states)

Screen locked devices under physical control of adversary (e.g. thieves)
Unlocked devices under control of different user (e.g. intimate partner abuse)

Devices in physical proximity to an adversary (with the assumed capability to
control radio channels, including cellular, WiFi, Bluetooth, GPS, NFC)

Threat Model (Untrusted Code)

Android intentionally allows (with explicit consent by end users)
Installation of application code from arbitrary sources

Abusing APIs supported by the OS with malicious intent, e.g. spyware
Exploiting bugs in the OS, e.g. kernel, drivers, or system services
Mimicking system or other app user interfaces to confuse users

Reading content from system or other application user interfaces
(e.g., screen-scrape)

Injecting input events into system or other app user interfaces

Unique Threat Model (Network)

The standard assumption of network communication under
complete control of an adversary certainly also holds for
Android. Assume fist hop (e.g., router) is also malicious.

Passive eavesdropping and traffic analysis, including tracking
devices within or across networks (e.g. based on MAC address
or other device network identifiers.)

Active manipulation of network traffic (e.g. MITM on TLS.)

Up to
$2,500,000

Up to
$2,000,000

Up to
$1,500,000

Up to
$1,000,000

Up to
$500,000

Up to
$200,000

Up to
$100,000

ZERODIUM Payouts for Mobiles’

3.001

WeChat
RCE+LPE

Persistence
10S JAndrok
5001

Baseband
RCE+LPE

Code Signing
Bypass

I0S/Androld 10S /Androkd

FCP: Full Chain with Persistence
RCE: Remote Code Execution
LPE: Local Privilege Escalation

SBX: Sandbox Escape or Bypass

2008

IMessage
RCE+LPE

108
8001 h |

LPE to
Kernel /Root

10S/Androld

5003

RCE
via MitM

10S/Androld

FB Messenger
RCE+LPE

10S /Androld
2 A

Media Files
RCE+LPE

IOS /Androld

Signal
RCE+LPE

10S /Androkd
202

Documents
RCE+LPE

0S /Androkd

Information
Disclosure

10S /Androkd

m OS
BN Android
Bl Any OS

Telegram
RCE+LPE

I0S/Androld
N

SBX
for Chrome

Androld

N

[K]ASLR
Bypass

10S /Androld

2010 b

Email App
RCE+LPE

IOS /Androld

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

Mobile Exploits Very Valuable

1001 h |

Android FCP
Zero Click

Androkd

N
iI0S FCP

2.001 h |

WhatsApp
RCE+LPE
Zero Click

108 /Androl
2.003 N

WhatsApp
RCE+LPE

10S/Androkd

SBX
for Safari

108

9002 A

Passcode

Bypass

108

Zero Click

oS

N

IMessage
RCE+LPE
Zero Click

oS

N

SMS/MMS

RCE+LPE

10S/Androkd

4.002

Safari
RCE+LPE

I0S

N

Safari RCE

w/o SBX

oS

N

Touch ID
Bypass

I0S

2019/09 © zerodium.com

Mobile Exploits Very Valuable

ZERODIUM Payouts for Mobiles’

1001 A |

Android FCP
Zero Click

h |

Up to
$2,500,000
FCP: Full Chain with Persistence I iOS
RCE: Remote Code Execution B Android
LPE: Local Privilege Escalation Em Any OS
Up to SBX: Sandbox Escape or Bypass
$2,000,000

3,001 2008 b | 2009 N

Up to e WeChat iMessage FB Messenger Signal Telegram
$500,000 RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE
10S /Androkd 10S 10S/Androld 10S /Androkd 10S /Androld
5001 N 8001 N zon N 2012 N
Up to Baseband LPE to Media Files Documents
$200,000 RCE+LPE Kernel /Root RCE+LPE RCE+LPE
10S/Androld 10S /Androkd
7001
Up to Code Signing WiFi Information [K]JASLR
$100,000 Bypass RCE via MitM Disclosure Bypass

10S/Androld 10S /Androkd 10S/Androld 10S /Androkd 10S/Androld

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

RCE+LPE

108 /Androld

2,001 N

WhatsApp
RCE+LPE
Zero Click

10S/Androkd

2,002 h |

WhatsApp
RCE+LPE

10S/Androkd

SBX
for Safari

108
N

Passcode
Bypass

108

2019/09 © zerodium.com

4,002 h |

4.006 h |

i0S FCP
Zero Click

10S

N

iMessage
RCE+LPE
Zero Click

108

b ZERODIUM Payouts for Desktops/Servers’

SMS/MMS
RCE+LPE

1001 A

Win RCE

E Windows Zero Click

B macOS

RCE: Remote Code Execution

10S/Androki LPE: Local Privilege Escalation

VME:Virtual Machine Escape . N
Safari
RCE+LPE

Chrome
RCE+LPE

108 win
5001 N b |

Safari RCE
w/o SBX

MS Outlook
RCE

MS Exchange
RCE

Touch ID
Bypass
108
2004

Up to Safari Edge Firefox Word/Excel

$100,000 RCE+LPE RCE+LPE RCE+LPE RCE

Mac win win

Up to Adobe PDF WinRAR Windows

$80,000 RCE+SBX RCE LPE/SBX

whn
2001

Up to Antivirus

RCE

$50,000

Physical Security

Unlocking Device

Typically: Need PIN, pattern, or
alphanumeric password to unlock device

Some applications (e.g., banking apps) also
require entering a PIN to access the app

Swipe GCode Problems

Smudge attacks [Aviv et al., 2010] T
‘-l UEPM

Entering pattern leaves smudge that can be n 15, 2010
detected with proper lighting 8 sory, try again

Smudge survives incidental contact with clothing @ o o

Another problem: entropy ® o o
People choose simple patterns — few strokes

At most 1,600 patterns with <5 strokes

« = Emergency call

Passcodes

Touch ID or Enter Passcode
CGRIFO O

How do you allow a 4-6 digit
PIN and be secure?

Emergency

Traditional Password Hashing

Plain Text Passwords (Terrible)
- Store the password and check match against user input
- Don’t trust anything that can provide you your password

Store Password Hash (Bad)
- Store SHA-1(pw) and check match against SHA-1(input)
- Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
- Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)
- Prevents attackers from pre-computing password hashes

Modern Password Hashing

Store Salted Hash (Best)
- Store (r, H(pw || r)) and check match against H(input || r)
- Prevents attackers from pre-computing password hashes

Choose an H that’s expensive to compute:
SHA-512: 3235.1 MH/s
SHA-3 (Keccak): 2500.4 MH/s
BCrypt: 43551 H/s

Use one of bcrypt, scrypt, or pbkdf2 when building an application

IPhone Password Hashing

Come up password hashing approach where 4-6 digits takes a very
long time to crack, even if the device is physically compromised...

Additional Constraints:
- Lots of computation uses up battery (limited resource)!
- Physical access allows copying secret off and cracking remotely

Secure Enclave

Every IPhone has an additional secure processor known as the
secure enclave. Memory is inaccessible to normal OS. Utilizes
a secure boot process that ensures its software is signed.

Each secure enclave has an AES key burned in at manufacture.
The hardware Is designed such that the processor has
instructions that allow encrypting and decrypting content using
that key, but the key itself is never accessible (incl. via JTAG)

IPhone Unlocking

User passcode is intertwined with AES key fused into secure
enclave (known as UID). Imagine: key = Encryptuip(passcode).

This means that the the key to decrypt the device can only be
derived on the single secure enclave on a specific phone. Not
possible to take offline and brute force.

IPhone Unlocking Key

Secure Enclave Processor

@
Hardware UID —_— Nedia Key
Password =——————————

@ @

User Records

Volume
a a Metadata

Class Key = \/olume Key ™% and Contents

What prevents asking secure enclave repeatedly to try different passwords®?

The passcode is entangled with the device’s UID many times —requires
approximately 80ms per password guess.

Imagine: Encryptuin(Encryptuin(Encryptuin(passcode)...))

IPhone Unlock Time Estimate

At 80ms per password check...

- 5.5 years to try all 6 digits pins
- 5 falled attempts = 1min delay, 9 failures = 1 hour delay

- >10 falled attempts = erase phone

All of this enforced by firmware on the secure enclave itself —
cannot be changed by any malware that controls iOS

FBI-Apple Encryption Dispute

After the San Bernardino shooting in 2016, FBI tried to compel
Apple to “unlock” iPhone. What were they specifically requesting?

Not possible to make password guessing any faster—innately
dependent on performance of burned-in AES key

FBI-Apple Encryption Dispute

Remember...
- 5 falled attempts = 1min delay, 9 failures = 1 hour delay

- >10 failed attempts = erase phone

This Is managed by code on the secure enclave, which can be
updated by Apple, not managed in hardware.

Technical Details

The court order wanted a custom version of a secure enclave firmware that would...

1."it will bypass or disable the auto-erase function whether or not it has been
enabled" (this user-configurable feature of IOS 8 automatically deletes keys
needed to read encrypted data after ten consecutive incorrect attempts)

2."1t will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing
electronically via the physical device port, Bluetooth, Wi-Fi, or other protocol”

3."it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE,
software running on the device will not purposefully introduce any additional delay
between passcode attempts beyond what is incurred by Apple hardware”

What happened?

Apple planned to fight the order, “The United States government has
demanded that Apple take an unprecedented step which threatens the
security of our customers. We oppose this order, which has implications
far beyond the legal case at hand. This moment calls for public

discussion, and we want our customers and people around the country to
understand what is at stake.”

One day before hearing, FBI dropped the request, saying a third party
had demonstrated a possible way to unlock the iIPhone in question. No
precent set re all writs act.

Secure Boot Chain

Why couldn’t the FBI just upload their own firmware onto the secure enclave?

When an iOS device is turned on, it executes code from read-only memory
known as Boot ROM. This immutable code, known as the hardware root of
trust, is laid down during chip fabrication, and is implicitly trusted.

The Boot ROM code contains the Apple Root CA public key, which is used to
verify that the bootloader is signed by Apple. This is the first step in the chain
of trust where each step ensures that the next is signed by Apple.

Boot verify Low level verify iBoot verify I0S
ROM signature' boot- Sig. Sig. Kernel

loader
Apple Root run if valid (LLB)

public-key
not updateable signature signature signature

Software Updates

To prevent devices from being downgraded to older versions that lack the
security updates, I0S uses System Software Authorization.

Device connects to Apple with cryptographic descriptors of each
component update (e.qg., boot loader, kernel, and OS image), current
versions, a random nonce, and device specific Exclusive Chip ID (ECID).

Apple signs device-personalized message allowing update, which boot
loader verifies.

FacelD/TouchiD

Files are encrypted through a hierarchy of encryption keys
Application files written to Flash are encrypted:
» Per-file key: encrypts all file contents (AES-XTS)
» Class key: encrypts per-file key (ciphertext stored in metadata)
» File-system key: encrypts file metadata

File System Key

o o

File Metadata

Hardware Key

o

File Contents

Class Key

File Key

Passcode Key

FacelD/TouchiD

Files are encrypted through a hierarchy of encryption keys

By default (no FacelD, TouchlD), class encryption keys are
erased from memory of secure enclave whenever the device is

locked or powered off

When TouchlD/FacelD is enabled, class keys are kept and
hardware sensor sends fingerprint image to secure enclave. All
ML/analysis is performed within the secure enclave.

How Secure 1S TouchlD?

Easy to build a fake finger if you have
someone’s fingerprint

- Several demos on YouTube. ~20 min
- Similar work on FacelD

2D infrared images

The problem: fingerprints are not VLA mask made of
A D stone powaer
secret. Cannot replace. _— ’

Convenient, but more secure solutions
exist, e.g., unlock phone via bluetooth
using a wearable device

More Information

I0S Security

https://www.apple.com/business/site/docs/IOS_Security Guide.pdf

Introduction

Apple designed the iOS platform with security at its core. When we set out to
create the best possible mobile platform, we drew from decades of experience
to build an entirely new architecture. We thought about the security hazards of
the desktop environment, and established a new approach to security in the

Data CPI':;‘:C“” design of i0S. We developed and incorporated innovative features that tighten
mobile security and protect the entire system by default. As a result, iOS is a
major leap forward in security for mobile devices.

App Sandbox)) . . .
Every iOS device combines software, hardware, and services designed to work

User Partition together for maximum security and a transparent user experience. iOS protects
Software (Encrypted) not only the device and its data at rest, but the entire ecosystem, including
everything users do locally, on networks, and with key Internet services.

OS Partition iOS and iOS devices provide advanced security features, and yet they’re also
easy to use. Many of these features are enabled by default, so IT departments
File System don’t need to perform extensive configurations. And key security features like

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

Mobile Device Management

Manage mobile devices across organization
Consists of central server and client-side software. Now part of mobile OSes too.

Allows:

- Diagnostics, repair, and update

- Backup and restore

- Policy enforcement (e.g. only allowed apps)
- Remote lock and wipe

- GPS Tracking

Sample MDM Enroliment

enrollment

N
\4

user's phone

V

Q ///DQ

< Server cert

push notification to request check in
HTTPS connection to

report status and MDM.
e . enterprise
recelve Instructions
server

policy file

configure, query, lock, wipe, ...

VR EWTETLE

What’s Different?

Applications are isolated
- Each runs In a separate execution context
- No default access to file system, devices, etc.

- Different than traditional OSes where multiple applications run
with the same user permissions!

Applications are installed via App Store (and malware spreads)
- Market: Vendor controlled (Apple) / open (Android)
- User approval of permissions

Android Isolation

Based on Linux with sandboxes (SE Linux)

- Appls run as separate UIDs, in separate
Processes.

- Memory corruption errors only lead to
arbitrary code execution in application,
not complete system compromise!

- Can still escape sandbox — must
compromise Linux kernel

I\ / \ / \ / \ 10
Since 5.0: ART (Android runtime)
replaces Dalvik VM to run apps natively

Binder] L

| Installed Applications ! ! System .
i '| Applications || Display
Yy ¥ Y . . 22 v vr-=-
I S > > > || > > b
BN EN BN EN BN ENEN

= = — = | § 3 o |! Bluetooth

=2 =3 = = | E = = o3 E \

y Ul U) 4
GPS

Receiver)

<

Cellular |
Radio J

Embedded Linux

What is Rooting?

Allows user to run applications with root privileges, e.g.,
modify/delete system files and app, CPU, network management

Done by exploiting vulnerability in firmware to install a custom OS
or firmware image

Double-edged sword... lots of malware only affects rooted
devices

Examples of Malware

DroidDream (Android)
- Over 58 apps uploaded to Google app market
- Conducts data theft; send credentials to attackers

Zitmo (Symbian, BlackBerry, Windows, Android)
- Poses as mobile banking application
- Captures info from SMS - steal banking 2FA codes
- Works with Zeus botnet

lkee (iI0S)
- Worm capabilities (targeted default ssh password)
- Worked only on jailbroken phones with ssh installed

Attacked vulnerability
In Android itself

Malicious application
that tricked users

Attacked vulnerability
In rooted IPhones

Large Target for Attackers

-
NAN
-
-

1200

The Cumulative Number of New Malware Samples

1000¢

800¢

600;}

400¢

200¢

I[thT)u et al.j

E AnserverBot
2010 « 2011

| DroidKungFu

| (including its variants)

: 115
- | 66 66
13 13 13 14 18 ;.23 33 [. . . 1 . . . 1
08 09 10 11 12 01 02 O3 04 O5 06 07 08 09 10 11

Legitimate Apps Too...

Top Mobile Apps Overwhelmingly Leak Private Data: Study

By Robert Lemos | Posted 2013-07-31 EEEmai 5 Print

paid apps

Hornyack et al.: 43 of 110 Android splication-
applications sent location or phone ID to

ISK more often

third-party advertising/analytics SErvers. |more likey to

/ appllcatlons

Android flashllght app tracks users via GPS i

FTC says hold on

By Michael Kassner in IT Security, December 11, 2013, 9:49 PM PST

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but....

1) Permissions: How can applications access sensitive
resources?

2) Communication: How can applications communicate
with each other?

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such
attacks by limiting applications’ default access to:

— System Resources (clipboard, file system)
— Devices (e.g., camera, GPS, phone, ...)
How should operating system grant permissions to applications?

Standard approach: Ask the user.

State of the Art

Prompts (time-of-use) Manifests (install-time)

. ' >
I i

“WherelsMyCar” Would Like
to Use Your Current Location

Twitter

——— e —

Accept & download

Don’t Allow OK

Storage
Modify/delete SD card contents >

System tools

8006 ,. HTMLS Demo: geolocation % '\ Prevent phone from sleeping, write
g - sync settings >
C' | htmiSdemos.com/geo
@ html5demos.com wants to use your computer's location. Learn Your location
| — Fine (GPS) location >

Network communication

State of the Art

Prompts (time-of-use) Manifests (install-time)

& (& 22 e S 1:48

Twitter

“WherelsMyCar” Would Like
to Use Your Current Location

Accept & download

PERMISSIONS

Don’t Allow OK

Storage
_ America ey Modify/delete SD card contents >

System tools
Prevent phone from sleeping, write

Disruptive. Leads to user fatigue

sync settings >
@ html5demos.com wants to use your computer's location. Learn Your location
| — Fine (GPS) location >

Network communication

State of the Art

Prompts (time-of-use) Manifests (install-time)

F /l\ X0 25 e S 1:48 pm
BN Aops

D g 7,
-i’ ‘t

“WherelsMyCar” Would Like
to Use Your Current Location

No context. Users do not
understand.

Don’t Allow OK

b : C odU ° C ALIgUC Prevent phone from sleeping, write
sync settings >
@ htmiSdemos.com wants to use your computer's location. Learn Your location
o — Fine (GPS) location >

Network communication

State of the Art

Prompts (time-of-use) Manifests (install-time)

1 1:48 pm

- o
7_.73 \ '. ‘ :
N °}b - T

“WherelsMyCar” Would Like Twitter
to Use Your Current Location

No context. Users do not
understand.

Disruptive. Leads to user fatigue

System tools

In practice, both are overly permissive:

Once granted permissions, apps can misuse them.

Network communication

Are Manifests Usable? (Felt et al)

Do users pay attention to permissions?

24 observed installations

® Looked at permissions
@® Didn’t look, but aware
© Unaware of permissions

... but 88% of users looked at reviews.

Do users understand the warnings?

| Permission \ n | Correct Answers
o | READ_CALENDAR | 101 | 46 45.5%
‘2 | CHANGE NETWORK_STATE 66 | 26 39.4%
3 | READ_SMS; 77 | 24 31.2%
— | CALL PHONE 83 | 16 19.3%

| WAKE_LOCK | 81 [27 33.3%
| WRITE EXTERNAL STORAGE | 92 | 14 15.2%
3 | READ_CONTACTS 86 | 11 12.8%
&3 | INTERNET 109 | 12 11.0%
N | READ PHONE STATE 85 | 4 4.7%

| READ_SMS» 54 | 12 22.2%
4 | CAMERA | 72 [7 9.7%

Table 4: The number of people who correctly answered a question. Ques-
tions are grouped by the number of correct choices. m i1s the number of
respondents. (Internet Survey, n = 302)

Do users act on permission information?

““‘Have you ever not installed an app because of permissions?”

8% 20% 25 interview responses

© Probably

Developers Don’t know the Permissions They Need

20%
15%
10%

5%

0%

1 2 3 4+

© Overprivileged
® Possible false positives
® Not overprivileged

Number of extra
permissions

Android Now Asks at Runtime
(was not the case historically)

é Allow Awesome

E Allow Awesome — Notes to access your
— Notes to access your contacts?
contacts?

Never ask again

DENY ALLOW
DENY ALLOW

Manifests

In both cases, the Android app needs to request permission in its
manifest—it’s just up to the Operating System when it asks the
user.

The OS might also just grant the right it doesn’t seem dangerous

Manifest also defines what endpoints other endpoints can
access. Whole class of malware that takes advantage of this of
misconfiguration.

Inter-Process Communication

Primary mechanism for IPC between application components in Android:
Intents

Explicit: specify name: e.g., com.example.testApp.MainActivity
Implicit: Specify action (e.g., ACTION_VIEW) and/or data (URI & MIME type)

An implicit intent specifies an action that can invoke any app on the device
able to perform the action. Using an implicit intent is useful when your app
cannot perform the action, but other apps probably can and you'd like the
user to pick which app to use.

Intent Eavesdropping

Attack #1: Eavesdropping / Broadcast Theft

com.example.goodapp2

com.example.goodapp1

com.example.badapp

Unauthorized Intent Receipt

Intent intent
startActivity() | onCreate()
v | v
Activity A Activity B

Figure 1. How an implicit intent is delivered through the system to start
another activity: [1] Activity A creates an Intent with an action description
and passes it to startActivity(). [2] The Android System searches all
apps for an intent filter that matches the intent. When a match is found, |3]
the system starts the matching activity (Activity B) by invoking its

onCreate() method and passing it the Intent

““‘Caution: To ensure that your
app is secure, always use an
explicit intent when starting

a Servier. Using an implicit
Intent to start a service is a
security hazard because you
can't be certain what service
will respond to the intent, and
the user can't see which
service starts.”

Intent Spoofing

* Attack #1: General intent spoofing
— Receiving implicit intents makes component public.

— Allows data injection.

* Attack #2: System intent spoofing

— Can’t directly spoof, but victim apps often don’t check specific
‘“action” in intent.

com.example.goodapp2

com.example.goodapp1

com.example.badapp

Intent + Malware

Malware often times takes advantage of improperly filtered
Intents to gain access to the permissions in other applications

Android Lecture Thursday

Guest Speakers:
Himanshu Dwivedi and Pavan Walvekar, Data Theorem

