
Mobile Security
CS155 Computer and Network Security

Mobile is Big!
Around 2.5B actively Android users. Users spend more time on
mobile than on desktops today.

Mobile Market Share

Global Bias in Market Share

What’s Valuable on Phones?
Mobile Specific
 – Identify location

 – Record phone calls

 – Log SMS (What about 2FA SMS?)

 – Send premium SMS messages

Traditional (Similar to Desktop PCs)
- Steal personal data (e.g., contact list, email, messaging, banking/financial

information, private photos)

- Phishing

- Malvertising

- Join Bots

Bring Your Own Device (BYOD)

Many companies are now allowing users to bring/use their own
personal devices — company data resides on devices

In the past, enterprise workstations were centrally managed.

How do you handle when users want to bring their own devices?

Unique Threat Model (Physical)

Powered-off devices under complete physical control of an adversary
(including well-resourced nation states)

Screen locked devices under physical control of adversary (e.g. thieves)

Unlocked devices under control of different user (e.g. intimate partner abuse)

Devices in physical proximity to an adversary (with the assumed capability to
control radio channels, including cellular, WiFi, Bluetooth, GPS, NFC)

Threat Model (Untrusted Code)
Android intentionally allows (with explicit consent by end users)
installation of application code from arbitrary sources

Abusing APIs supported by the OS with malicious intent, e.g. spyware

Exploiting bugs in the OS, e.g. kernel, drivers, or system services

Mimicking system or other app user interfaces to confuse users

Reading content from system or other application user interfaces 
(e.g., screen-scrape)

Injecting input events into system or other app user interfaces

Unique Threat Model (Network)
The standard assumption of network communication under
complete control of an adversary certainly also holds for
Android. Assume fist hop (e.g., router) is also malicious.

Passive eavesdropping and traffic analysis, including tracking
devices within or across networks (e.g. based on MAC address
or other device network identifiers.)

Active manipulation of network traffic (e.g. MITM on TLS.)

Mobile Exploits Very Valuable

Mobile Exploits Very Valuable

Physical Security

Unlocking Device

Typically: Need PIN, pattern, or
alphanumeric password to unlock device

Some applications (e.g., banking apps) also
require entering a PIN to access the app

Swipe Code Problems
Smudge attacks [Aviv et al., 2010]

Entering pattern leaves smudge that can be
detected with proper lighting

Smudge survives incidental contact with clothing

Another problem: entropy
People choose simple patterns – few strokes

At most 1,600 patterns with <5 strokes

Passcodes

How do you allow a 4-6 digit
PIN and be secure?

Traditional Password Hashing
Plain Text Passwords (Terrible)
 - Store the password and check match against user input

 - Don’t trust anything that can provide you your password

Store Password Hash (Bad)
 - Store SHA-1(pw) and check match against SHA-1(input)

 - Weak against attacker who has hashed common passwords

Store Salted Hash (Better)
 - Store (r, SHA-1(pw || r)) and check match against SHA-1(input || r)

 - Prevents attackers from pre-computing password hashes

Modern Password Hashing
Store Salted Hash (Best)
 - Store (r, H(pw || r)) and check match against H(input || r)

 - Prevents attackers from pre-computing password hashes

Choose an H that’s expensive to compute:

SHA-512: 3235.1 MH/s

SHA-3 (Keccak): 2500.4 MH/s

BCrypt: 43551 H/s

Use one of bcrypt, scrypt, or pbkdf2 when building an application

iPhone Password Hashing
Come up password hashing approach where 4-6 digits takes a very
long time to crack, even if the device is physically compromised…

Additional Constraints:
 - Lots of computation uses up battery (limited resource)!

 - Physical access allows copying secret off and cracking remotely

Secure Enclave
Every iPhone has an additional secure processor known as the
secure enclave. Memory is inaccessible to normal OS. Utilizes
a secure boot process that ensures its software is signed.

Each secure enclave has an AES key burned in at manufacture.
The hardware is designed such that the processor has
instructions that allow encrypting and decrypting content using
that key, but the key itself is never accessible (incl. via JTAG)

iPhone Unlocking

User passcode is intertwined with AES key fused into secure
enclave (known as UID). Imagine: key = EncryptUID(passcode).

This means that the the key to decrypt the device can only be
derived on the single secure enclave on a specific phone. Not
possible to take offline and brute force.

iPhone Unlocking Key

What prevents asking secure enclave repeatedly to try different passwords?

The passcode is entangled with the device’s UID many times —requires
approximately 80ms per password guess.

Imagine: EncryptUID(EncryptUID(EncryptUID(passcode)…))

iPhone Unlock Time Estimate
At 80ms per password check…

 

 - 5.5 years to try all 6 digits pins

 - 5 failed attempts ⇒ 1min delay, 9 failures ⇒ 1 hour delay 
 - >10 failed attempts ⇒ erase phone

All of this enforced by firmware on the secure enclave itself —
cannot be changed by any malware that controls iOS

FBI–Apple Encryption Dispute

After the San Bernardino shooting in 2016, FBI tried to compel
Apple to “unlock” iPhone. What were they specifically requesting?

Not possible to make password guessing any faster—innately
dependent on performance of burned-in AES key

FBI–Apple Encryption Dispute

Remember…

 - 5 failed attempts ⇒ 1min delay, 9 failures ⇒ 1 hour delay 
 - >10 failed attempts ⇒ erase phone

This is managed by code on the secure enclave, which can be
updated by Apple, not managed in hardware.

Technical Details
The court order wanted a custom version of a secure enclave firmware that would… 

1."it will bypass or disable the auto-erase function whether or not it has been
enabled" (this user-configurable feature of iOS 8 automatically deletes keys
needed to read encrypted data after ten consecutive incorrect attempts)

2."it will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing
electronically via the physical device port, Bluetooth, Wi-Fi, or other protocol"

3."it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE,
software running on the device will not purposefully introduce any additional delay
between passcode attempts beyond what is incurred by Apple hardware”

What happened?
Apple planned to fight the order, “The United States government has
demanded that Apple take an unprecedented step which threatens the
security of our customers. We oppose this order, which has implications
far beyond the legal case at hand. This moment calls for public
discussion, and we want our customers and people around the country to
understand what is at stake.”

One day before hearing, FBI dropped the request, saying a third party
had demonstrated a possible way to unlock the iPhone in question. No
precent set re all writs act.

Secure Boot Chain
Why couldn’t the FBI just upload their own firmware onto the secure enclave?

When an iOS device is turned on, it executes code from read-only memory
known as Boot ROM. This immutable code, known as the hardware root of
trust, is laid down during chip fabrication, and is implicitly trusted.

The Boot ROM code contains the Apple Root CA public key, which is used to
verify that the bootloader is signed by Apple. This is the first step in the chain
of trust where each step ensures that the next is signed by Apple.

Software Updates
To prevent devices from being downgraded to older versions that lack the
security updates, iOS uses System Software Authorization.

Device connects to Apple with cryptographic descriptors of each
component update (e.g., boot loader, kernel, and OS image), current
versions, a random nonce, and device specific Exclusive Chip ID (ECID).

Apple signs device-personalized message allowing update, which boot
loader verifies.

FaceID/TouchID
Files are encrypted through a hierarchy of encryption keys
Application files written to Flash are encrypted:
 • Per-file key: encrypts all file contents (AES-XTS)
 • Class key: encrypts per-file key (ciphertext stored in metadata)
 • File-system key: encrypts file metadata

FaceID/TouchID
Files are encrypted through a hierarchy of encryption keys

By default (no FaceID, TouchID), class encryption keys are
erased from memory of secure enclave whenever the device is
locked or powered off

When TouchID/FaceID is enabled, class keys are kept and
hardware sensor sends fingerprint image to secure enclave. All
ML/analysis is performed within the secure enclave.

How Secure is TouchID?
Easy to build a fake finger if you have
someone’s fingerprint

 - Several demos on YouTube. ~20 min  
 - Similar work on FaceID

The problem: fingerprints are not
secret. Cannot replace.

Convenient, but more secure solutions
exist, e.g., unlock phone via bluetooth
using a wearable device

More Information
iOS Security

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

Mobile Device Management
Manage mobile devices across organization

Consists of central server and client-side software. Now part of mobile OSes too.

Allows:
 - Diagnostics, repair, and update
 - Backup and restore
 - Policy enforcement (e.g. only allowed apps)
 - Remote lock and wipe
 - GPS Tracking

Sample MDM Enrollment

Mobile Malware

What’s Different?
Applications are isolated

- Each runs in a separate execution context

- No default access to file system, devices, etc.

- Different than traditional OSes where multiple applications run

with the same user permissions!

Applications are installed via App Store (and malware spreads)

- Market: Vendor controlled (Apple) / open (Android)

- User approval of permissions

Android Isolation
Based on Linux with sandboxes (SE Linux)

- Appls run as separate UIDs, in separate

processes.

- Memory corruption errors only lead to

arbitrary code execution in application,
not complete system compromise!

- Can still escape sandbox – must
compromise Linux kernel

What is Rooting?
Allows user to run applications with root privileges, e.g.,
modify/delete system files and app, CPU, network management

Done by exploiting vulnerability in firmware to install a custom OS
or firmware image

Double-edged sword… lots of malware only affects rooted
devices

Examples of Malware
DroidDream (Android)
 - Over 58 apps uploaded to Google app market

 - Conducts data theft; send credentials to attackers

Zitmo (Symbian, BlackBerry, Windows, Android)
 - Poses as mobile banking application

 - Captures info from SMS – steal banking 2FA codes

 - Works with Zeus botnet

Ikee (iOS)
 - Worm capabilities (targeted default ssh password)

 - Worked only on jailbroken phones with ssh installed

Attacked vulnerability
 in Android itself

Malicious application
that tricked users

Attacked vulnerability
 in rooted iPhones

Large Target for Attackers

Legitimate Apps Too…

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but….

1) Permissions: How can applications access sensitive
resources?

2) Communication: How can applications communicate  
with each other?

(1) Permission Granting Problem
Smartphones (and other modern OSes) try to prevent such
attacks by limiting applications’ default access to:

 – System Resources (clipboard, file system)

 – Devices (e.g., camera, GPS, phone, …)

How should operating system grant permissions to applications?

Standard approach: Ask the user.

State of the Art

State of the Art

Disruptive. Leads to user fatigue

State of the Art

Disruptive. Leads to user fatigue

No context. Users do not
understand.

State of the Art

Disruptive. Leads to user fatigue No context. Users do not
understand.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Are Manifests Usable? (Felt et al)

Developers Don’t know the Permissions They Need

Android Now Asks at Runtime
(was not the case historically)

Manifests
In both cases, the Android app needs to request permission in its
manifest—it’s just up to the Operating System when it asks the
user.

The OS might also just grant the right it doesn’t seem dangerous

Manifest also defines what endpoints other endpoints can
access. Whole class of malware that takes advantage of this of
misconfiguration.

Inter-Process Communication
Primary mechanism for IPC between application components in Android:
Intents

Explicit: specify name: e.g., com.example.testApp.MainActivity

Implicit: Specify action (e.g., ACTION_VIEW) and/or data (URI & MIME type)

An implicit intent specifies an action that can invoke any app on the device
able to perform the action. Using an implicit intent is useful when your app
cannot perform the action, but other apps probably can and you'd like the
user to pick which app to use.

Intent Eavesdropping

Unauthorized Intent Receipt

Intent Spoofing

Intent + Malware

Malware often times takes advantage of improperly filtered
intents to gain access to the permissions in other applications

Android Lecture Thursday

Guest Speakers: 
Himanshu Dwivedi and Pavan Walvekar, Data Theorem

