
DoS Attacks and Network Defenses
CS155 Computer and Network Security

Review: On Path Attacker

Review: Off Path Attacker

No security guarantees
Confidentiality — Ethernet, IP, UDP, and TCP do not provide any
confidentiality. All traffic is in cleartext.

 

On-path attacker can do anything. ARP and BGP attacks allow an off-
path attacker to become on-path and MITM connections.

Integrity — No guarantees that attacker hasn’t modified traffic. Ethernet,
IP and UDP have no protection against spoofed packets. TCP provides
weak guarantee of source authentication.

Availability — Attackers can attempt to inject RST packets. More today.

Assume network is malicious

Always Assume: The network is out to get you.

Solution: Always use TLS if you want any protection against large-scale
eavesdropping (e.g., intelligence agencies), or guarantee that data
hasn’t been modified or corrupted by an on-path attacker

Note! HTTPS and TLS aren’t just for sensitive material! There have been
attacks where malicious Javascript or malware is injected into websites.

Building a network protocol
Don’t build network proto from scratch

- Never not roll your own crypto

- Many opportunities to mess up

parsing network packets

gRPC: http2 + TLS 1.3 RPC framework

- Safe parsing in 11 languages

- Exceptionally efficient

- Streaming/Sync/Async

- TLS-based authentication

syntax = "proto3";

package calc;

message AddRequest {
 int32 n1 = 1;
 int32 n2 = 2;
}

message AddReply{
 int64 res = 1;
}

service Calculator {
 rpc Add(AddRequest) returns (AddReply) {}
 rpc Substract(SubRequest) returns (SubReply) {}
 rpc Multiply(MultRequest) returns (MultReply) {}
 rpc Divide(DivideRequest) returns (DivideReply) {}
}

Denial of Service Attacks

Goal: take large service/network/org offline by overwhelming it
with network traffic such that they can’t process real requests

How: find mechanism where attacker doesn’t spend a lot of
effort, but requests are difficult/expensive for victim to process

Types of Attacks

DoS Bug: design flaw that allows one machine to disrupt a
service. Generally a protocol asymmetry, e.g., easy to send
request, difficult to create response. Or requires server state.

DoS Flood: control a large number of requests from a botnet or
other machines you control

DoS at Every Layer

Link Layer: send too much traffic for switches/routers to handle

TCP/UDP: require servers to maintain large number of concurrent
connections or state

Application Layer: require servers to perform expensive queries
or cryptographic operations

TCP Handshake

SYN Floods

Core Problem

Problem: server commits resources (memory) before confirming
identify of the client (when client responds)

Bad Solution:
 - Increase backlog queue size

 - Decrease timeout

Real Solution: Avoid state until 3-way handshake completes

SYN Cookies
Idea: Instead of storing SNc and SNs…  

send a cookie back to the client.

 
L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T)

 key: picked at random during boot

T = 5-bit counter incremented every 64 secs. 
SNs = (T || mss || L)

Honest client sends ACK (AN=SNs , SN=SNC+1)

 Server allocates space for socket only if valid SNs

Server does not save state 
(loses TCP options)

Amplification Attacks
Services that respond to a single (small)

UDP packet with a large UDP packet can
be used to amplify DOS attacks

Attacker forges packet and sets source IP to
victim’s IP address. When service
responds, it sends large amount of data to
the spoofed victim

The attacker needs a large number of these
services to amplify packets. Otherwise, the
victim could just drop the packets from the
small number of hosts

60-70x Increase in Size

DNS ANY

example.com.
 A 1.2.3.8  A 1.2.3.9A 1.2.3.4  A 1.2.3.5  A 1.2.3.6A 1.2.3.7  A 1.2.3.8  

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

MX mx1.example.com.

Common UDP Amplifiers
DNS: ANY query returns all records server has about a domain

NTP: MONLIST returns list of last 600 clients who asked for the time recently

DNS: Do not have recursive resolvers on the public Internet.

NTP: Do not respond to commands like MONLIST

Both are considered misconfigurations today, but often 100Ks of
misconfigured hosts on the public Internet

Amplification Attacks

2013: DDoS attack generated 300 Gbps (DNS) 
- 31,000 misconfigured open DNS resolvers, each at 10 Mbps

 - Source: 3 networks that allowed IP spoofing

2014: 400 Gbps DDoS attacked used 4,500 NTP servers

October 21, 2016

Image: Verisign

“We are still working on analyzing the data but the estimate at the time of
this report is up to 100,000 malicious endpoints. […] There have been
some reports of a magnitude in the 1.2 Tbps range; at this time we are
unable to verify that claim.”

A Botnet of IoT Devices

OVH/Dyn/KrebsBot Master

GRE 

HTTP 

TLS

200K IoT devices

Not Amplification. 
Flood with SYN, ACK, UDP, and GRE packets

The Mirai Malware

Command
& Control LoaderReport

Server

Devices

Infrastructure

Attacker

DDoS Target

��Send command

��Dispatch

� Attack

��Report

��Scan

���Load� ��Relay

Victim

Bots

Bot master will issue commands to scan  
or start an attack

Attack Command:

- Action (e.g., START, STOP)

- Target IP(s)

- Attack Type (e.g., GRE, DNS, TCP)

- Attack Duration

What made Mirai Successful?

The Mirai malware is (astoundingly) badly
written. It uses no new or complex techniques.

Mirai was successful because:

1. IoT security bar is very low

2. Attack simplicity enabled the malware to

compromise heterogeneous hardware

3. Stateless scanning was an improvement

over prior versions
Mirai

BASHLITE

LizardStresser
Gafgyt

Torlus

Lizkebab

Qbot

Password Guessing

Krebs Graph

Source: 2017 Akamai State of the Internet

“The magnitude of the attacks seen during the final week were significantly larger than
the majority of attacks Akamai sees on a regular basis. […] In fact, while the attack on
September 20 was the largest attack ever mitigated by Akamai, the attack on September
22 would have qualified for the record at any other time, peaking at 555 Gbps.”

Booter Services

Memcache: retrieve large record

The server responds by firing back as much
as 50,000 times the data it received.

Exist both a UDP and TCP version. Only
works for UDP! TCP would require a three-
way handshake and server would realize IP
had been spoofed.

Memcache

Google Project Shield
DDoS Attacks are often used to censor content. In the case of Mirai,
Brian Kreb’s blog was under attack.

Google Project shield uses Google bandwidth to shield vulnerable
websites (e.g., news, blogs, human rights orgs)

Moving Up Stack: GET Floods
Command bot army to:

 * Complete real TCP connection

 * Complete TLS Handshake

 * GET large image or other content

Will bypass flood protections…. but attacker can no longer use
random source IPs

Victim site can block or rate limit bots

Github Attacks
1.35 Tbps attack against Github caused by javascript injected into HTTP web

requests

The Chinese government was widely suspected to be behind the attack

Ingress Filtering

Ingress Filtering
All ISPs need to do this — requires global coordination

If 10% of networks don’t implement, there’s no defense

No incentive for an ISP to implement — doesn’t affect them

As of 2017 (from CAIDA):
33% of autonomous systems allow spoofing

23% of announced IP address space allow spoofing

2013 300 Gbps attack sent attack traffic from only 3 networks

Client Puzzles
Idea: What if we force every client to do moderate amount of
work for every connection they make?

Example:
 1) Server Sends: C

 2) Client: find X s.t. LSBn(SHA-1(C||X)) = 0n

Assumption:
 Puzzle takes 2n for the client to compute (0.3 s on 1Ghz core)

 Solution is trivial for server to check (single SHA-1)

Client Puzzles
Not frequently used in the real world

Benefits:
 * Can change n based on amount of attack traffic

Limitations:
 * Requires changes to both protocols, clients, and servers

 * Hurts low power legitimate clients during attack (e.g., phones)

Network Defenses

Local Services

Review: Popular TCP and UDP services live on standardized ports.
HTTPS servers listen on TCP/443. SSH on TCP/22.

Some services you don’t want listening on the public Internet.

Recursive DNS Resolvers: allows attackers to mount DDoS attacks

Windows File Sharing: historically full of vulnerabilities. What if a local
machine doesn’t have a secure password on it?

Firewalls
Separate local area network (LAN) from the Internet. Only allow some
traffic to transit.

Sometimes rules on a router. Sometimes a standalone device.

Basic Packet Filtering

Uses transport and IP layer information only

 - IP Source Address, Destination Address

 - Protocol (TCP, UDP, ICMP, etc.)

 - TCP and UDP source and destination ports

Examples:
• “Do not allow external hosts to connect to Windows File Sharing”  

 -> DROP ALL INBOUND PACKETS TO TCP PORT 445

What’s the rule?
What if you have a network with lots of servers but only want
outsiders to be able to access a web server?

DROP ALL INBOUND PACKETS IF DEST PORT != 80

All outbound connections also have a source port! Their
responses will blocked!

IANA Port Numbering

System or Well-Known Ports [1,1023]:
 Common services, e.g., HTTP -> 80, SSH -> 22

User or registered ports [1024, 49151]
 Less well-known services

Ephemeral/Dynamic/Private Ports [49152, 65535]
 Short lived connections

Stateful Filtering
Firewall tracks outgoing connections and allows associated
inbound traffic back through

Network Address Translation (NAT)
NATs map between two different address spaces. Most home
routers are NATs and firewalls.

Private Subnets
10.0.0.0 – 10.255.255.255

172.16.0.0 – 172.31.255.255

192.168.0.0 – 192.168.255.255

Local vs. Network Firewall

Firewalls we’ve discussed so far have all been network firewalls.
Most have lived at the edge of the organization.

Firewalls also run on individual hosts. Linux servers use iptables.

Typically have a combination of network and host firewalls

 
sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

sudo iptables -A INPUT -p tcp --dport 22 -m conntrack --ctstate NEW,ESTABLISHED -j ACCEPT

Application Layer Filtering

Enforce protocol-specific policies:

 - Virus scanning for SMTP

 - Need to understand protocol, MIME encoding, ZIP files, etc

 - Look for SQL injection attacks in HTTP POSTs

Outbound Too!
Organizations will often inspect outbound traffic as well

 - Block access to sites with known malicious behavior

 - Prevent exfiltrating data

 - Block services like bit torrent

Be careful on enterprise networks! Sometimes companies will even
install their own root certificates on employee workstations to
monitor TLS traffic.

Intrusion Detection Systems (IDS)

Software/device to monitor network traffic for attacks or policy violations

Violations are reported to a central security information and event
management (SIEM) system where analysts can later investigate

Signature Detection: maintains long list of traffic patterns (rules)
associated with attacks

Anomaly Detection: attempts to learn normal behavior and report
deviations

Open Source IDS
Three Major Open Source IDS (and a tremendous number of
commercial products)

Snort

Bro Zeek

Suricata

Example Snort Rule

Remote Access

Virtual Private Networks (VPNs)
Problem: How do you provide secure communication for non-TLS
protocols across the public Internet?

VPNs create a fake shared network on which traffic is encrypted

Two Broad Types:

 - Remote client (e.g., traveler with laptop) to corporate network

 - Connect two remote networks across Internet

IPSec
Several VPN protocols exist (PPTP, L2TP, IPsec, OpenVPN)

Most popular is IPsec. OpenVPN is open source.

Cisco AnyConnect
Stanford and many other organizations use Cisco AnyConnect

Encapsulates traffic in TLS! Initial handshake uses normal TCP-
based TLS for initial handshake and then DTLS (UDP-based
TLS) to transport data

Gooey Middle

VPNs support the idea of having a secure internal network and
untrusted public Internet. Unfortunately, attacker has a ton of
access once the network perimeter is breached.

Unfortunately, internal networks aren’t that secure. Computers
are compromised all the time and attackers have free rein.

Zero Trust Security (BeyondCorp)

Google: assume internal network is also out to get you. Remove
privileged intranet and put all corporate applications on the Internet.

Access depends solely on device and user credentials, regardless of
a user’s network location

Protect applications, not the network

