
Dan Boneh

Web security

Web Session Management

Dan Boneh

Recap: Web attacker model
bank.com

attacker.com

bank.com Web attacker: (simplified)
Attacker origin tries to disrupt
another origin, or see its data.
Both running in a correct browser.attacker

Why is this hard to prevent?
the Web is a hodgepodge of
technologies, often with
conflicting security policies

Dan Boneh

Recap: same origin policy
Review: Same Origin Policy (SOP) for DOM:

– Origin A can access origin B’s DOM if match on
(scheme, domain, port)

Review: Same Original Policy (SOP) for cookies:

– Based on: ([scheme], domain, path)

optional

scheme://domain:port/path?params

Dan Boneh

scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send) ;
secure = (only send over HTTPS) ;
expires = (when expires) ;
HttpOnly ;
SameSite = [lax | strict]

if expires=NULL:
this session only

if expires=past date:
browser deletes cookie

weak XSS defense

weak CSRF defense

Dan Boneh

Remember: Cookies have no integrity
User can change and delete cookie values

• Edit cookie database (FF: cookies.sqlite)
• Modify Cookie header (FF: TamperData extension)

Silly example: shopping cart software
Set-cookie: shopping-cart-total = 150 ($)

User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

Similar problem with localStorage and hidden fields:
<INPUT TYPE=“hidden” NAME=price VALUE=“150”>

5

Dan Boneh

Solution: cryptographic checksums

Binding to session-id (SID) makes it harder to replay old cookies

Goal: data integrity
Requires server-side secret key k unknown to browser

Browser
Server kSet-Cookie: NAME = value T

Cookie: NAME = value T

Generate tag: T ⟵ MACsign(k, (SID, name, value))

Verify tag: MACverify(k, (SID, name, value), T)

Dan Boneh7

Example: ASP.NET
System.Web.Configuration.MachineKey
– Secret web server key intended for cookie protection

Creating an encrypted cookie with integrity:

HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =

HttpSecureCookie.Encode (cookie);

Decrypting and validating an encrypted cookie:

HttpSecureCookie.Decode (cookie);

Dan Boneh

Clickjacking Attacks

Dan Boneh

Framing: one site can frame another

Can this be abused?

framed page
framing page

<iframe name=“myframe” src=“http://www.google.com/”>
This text is ignored by most browsers.

</iframe>

Dan Boneh

Clickjacking [rsnake’08]
User visits a gaming web site. Game frames Twitter site as:
(Twitter frame is occluded by game frame)

Dan Boneh

Tap-jacking attacks [RBB’10]

User visits a gaming web site:

• Can zoom, and auto scroll

• Web site displays an incoming text
message screen, but frames Twitter

Dan Boneh

Incorrect solution: framebusting
Code on a page that prevents other pages from framing

if (top != self) { top.location = self.location; }

Dan Boneh

Many attacks
Example: on framing page:

<script>
window.addEventListener('beforeunload', function(e) {

e.preventDefault();
})

</script>

<iframe src="http://www.paypal.com"> </iframe>

User likely to hit cancel and cancel framebusting

Dan Boneh

What the user will see

Dan Boneh

Correct defense: CSP
example.comweb browser

HTTP response from server:

HTTP/1.1 200 OK
…
Content-Security-Policy: frame-ancestors 'none’;
…

<iframe src=‘example.com’>
will cause an error

frame-ancestors ‘self’ ;
means only example.com
can frame page

Dan Boneh

Sub Resource
Integrity (SRI)

Dan Boneh

The sub-resource integrity problem
biz.comtop-level page

code.jquery.com

sub-resource

<script src=“https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

</script>

What if the sub-resource site serves bad content?

in top-level page:

Dan Boneh

Sub-resource integrity (SRI)
SRI attribute can be added to scripts and style sheets:

<script src=“https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

</script>

<link rel='stylesheet’ type='text/css’ href='https://example.com/style.css’
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

integrity attribute: precomputed hash of the the target sub-resource

Dan Boneh

What the browser does

Browser: (1) load sub-resource, (2) compute hash of contents,
(3) compare value to the integrity attribute.

• if hash mismatch: script or stylesheet are not executed
and an error is raised.

<script src=“https://code.jquery.com/jquery-3.5.1.min.js”
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=”
crossorigin="anonymous">

</script>

Note: SRI is not supported on IE

Dan Boneh

Enforcing SRI using CSP
example.comweb browser

HTTP response from server:

HTTP/1.1 200 OK
…
Content-Security-Policy: require-sri-for script style;
…

Requires SRI for all scripts and style sheets on page

Dan Boneh

Interlude: Designing
Security Prompts

Dan Boneh

Users are faced with a lot of challenging trust-
related decisions

Dan Boneh

An example problem: IE6 mixed context

Vague threat.
What’s the
risk? What
could happen?

How should the user make
this decision? No clear
steps for user to follow.

“Yes”, the possibly less
safe option, is the default

Dan Boneh

Better

Even better: load the safe content, and use the
address bar to enable the rest

(IE8)

(IE9)

Dan Boneh

Guidelines
• Philosophy:

– Does the user have unique knowledge the system doesn’t?
– Don’t involve user if you don’t have to
– If you involve the user, enable them to make the right decision

• Make sure your security dialogs are NEAT:

– Necessary: Can the system take action without the user?
If the user has no unique knowledge, redesign system.

– Explained: see next slides

– Actionable: Can users make good decisions with your UI in both
malicious and benign situations?

– Tested: Test your dialog on a few people who haven’t used the
system before -- both malicious and benign situations.

Dan Boneh

Example 1: bad explanation

Most users will not understand “revocation information” .

Choices are unclear, consequence is unclear.

IE6 CRL check failure notification

Dan Boneh

Better explanation

Source

Risk

Choices

Process

Dan Boneh

In Chrome (2019)

Risk

Choices

Explanation

Dan Boneh

In Chrome (2019)

Choice

Process

(expired certificate)

Dan Boneh

Example 2: bad explanation

Attacker can abuse explanation causing bad user decisions.

Used by Conficker spread through USB drives.

AutoPlay dialog in Vista

Dan Boneh

A better design

Windows 7 AutoPlay removed the auto-run option

Dan Boneh

… back to Web security

Session Management and
User Authentication on
the Web

Dan Boneh

Sessions
A sequence of requests and responses from one browser
to one (or more) sites
– Session can be long (e.g. Gmail) or short
– without session mgmt:

users would have to constantly re-authenticate

Session mgmt: authorize user once;
– All subsequent requests are tied to user

Dan Boneh

Pre-history: HTTP auth
HTTP request: GET /index.html
HTTP response contains:

WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

Dan Boneh

HTTP auth problems
Hardly used in commercial sites:

• User cannot log out other than by closing browser
– What if user has multiple accounts?

multiple users on same machine?

• Site cannot customize password dialog

• Confusing dialog to users

• Easily spoofed Do not use …

Dan Boneh

Session tokens
Browser

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username, password, and 2nd factor

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials

(crypto course)

Validate
token

web site

Dan Boneh

Storing session tokens:
Lots of options (but none are perfect)

Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

Embed in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

In a hidden form field:
<input type=“hidden” name=“SessionToken” value=“uydh735”>

Dan Boneh

Storing session tokens: problems
Browser cookie: browser sends cookie with every request,

even when it should not (CSRF) [note: SameSite attribute]

Embed in all URL links: token leaks via HTTP Referer header

In a hidden form field: does not work for long-lived sessions

Best answer: a combination of all of the above
Supported in most frameworks

PHP ex: output_add_rewrite_var(name, value)

(or if user posts URL in a public blog)

Dan Boneh

The HTTP referer header

Referer leaks URL session token to 3rd parties

Referer supression:
• not sent when HTTPS site refers to an HTTP site
• in HTML5:

Dan Boneh

The Logout Process
Web sites must provide a logout function:
• Functionality: let user to login as different user
• Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client
2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!
⇒ Especially risky for sites who use HTTP after login

Dan Boneh

The Logout Process (cont.)
What if a user suspects their machine is compromised?
– Logging in from an untrusted machine (Internet Café), or
– Malware infection of user’s machine

Site must show all devices currently logged into user’s account

– Let user terminate any unrecognized device

⇒ mark terminated session token as expired on server

Dan Boneh

Session hijacking

Dan Boneh

Session hijacking
Attacker waits for user to login

then attacker steals user’s Session Token
and “hijacks” session

⇒ attacker can issue arbitrary requests on behalf of user

Example: FireSheep

Firefox extension: hijacks HTTP session tokens over WiFi

Solution: always send session tokens over HTTPS!

Dan Boneh

Beware: Predictable tokens
Example 1: counter

⇒ user logs in, gets counter value,
can view sessions of other users

Example 2: weak MAC. token = { userid, MACk(userid) }
• Weak MAC exposes k from few cookies.

Apache Tomcat: generateSessionId()
• Returns random session ID [server retrieves client state based on sess-id]

Dan Boneh

Session tokens must be unpredictable to attacker

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

Rails: token = SHA256(current time, random nonce)

Dan Boneh

Beware: Session token theft
Example 1: use of HTTP after login over HTTPS
• Enables cookie theft at WiFi access point (e.g. Firesheep)
• Other ways network attacker can steal token:
– Site has mixed HTTPS/HTTP pages ⇒ token sent over HTTP
– Man-in-the-middle attacks on SSL

Example 2: Cross Site Scripting (XSS) exploits

Amplified by poor logout procedures:
– Logout must invalidate token on server

Dan Boneh

Mitigating SessionToken theft by binding
SessionToken to client’s computer

Client IP addr: makes it harder to use token at another machine
– But honest client may change IP addr during session
• client will be logged out for no reason

Client user agent: weak defense against theft, but doesn’t hurt.

TLS session id: same problem as IP address (and even worse)

A common idea: embed machine specific data in SID

Dan Boneh

Session fixation attacks
Suppose attacker can set the user’s session token:
• For URL tokens, trick user into clicking on URL
• For cookie tokens, set using XSS exploits

Attack: (say, using URL tokens)

1. Attacker gets anonymous session token for site.com

2. Sends URL to user with attacker’s session token

3. User clicks on URL and logs into site.com
– this elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack user’s session.

Dan Boneh

Session fixation: lesson

When elevating user from anonymous to logged-in:

always issue a new session token

(e.g. in PHP by calling session_regenerate_id() in PHP)

After login, token changes to value unknown to attacker

⇒ Attacker’s token is not elevated.

Dan Boneh

Summary
• Session tokens are split across multiple client state mechanisms:
– Cookies, hidden form fields, URL parameters
– Cookies by themselves are insecure (CSRF, cookie overwrite)

– Session tokens must be unpredictable and resist theft by
network attacker

• Ensure logout and timeout invalidates session on server

