Control Hijacking

Control Hijacking:
Defenses

Recap: control hijacking attacks

Stack smashing: overwrite return address or function pointer
Heap spraying: reliably exploit a heap overflow

Use after free: attacker writes to freed control structure,
which then gets used by victim program

Integer overflows

Format string vulnerabilities

The mistake: mixing data and control

* An ancient design flaw:
— enables anyone to inject control signals

e 1971: AT&T learns never to mix control and data

Control hijacking attacks

The problem: mixing data with control flow in memory

arguments

i
stack frame

data overwrites
return address

Later we will see that mixing data and code is also the
reason for XSS, a common web vulnerability

Preventing hijacking attacks

Fix bugs:
— Audit software

* Automated tools: Coverity, Infer, ... (more on this next week)
— Rewrite software in a type safe languange (Java, Go, Rust)

 Difficult for existing (legacy) code ...

Platform defenses: prevent attack code execution |

Add runtime code to detect overflows exploits
— Halt process when overflow exploit detected
— StackGuard, CFI, LibSafe, ...

]

Transform:

Complete Breach

\ ¢

Denial of service

Control Hijacking

Platform Defenses

Marking memory as non-execute (DEP)

Prevent attack code execution by marking stack and heap as non-executable

« NX-bit on AMD64, XD-bit on Intel x86 (2005), XN-bit on ARM
— disable execution: an attribute bit in every Page Table Entry (PTE)

* Deployment:
— Linux, OpenBSD
— Windows DEP: since XP SP2 (2004)
Visual Studio: /NXCompat[:NO]

* Limitations:
— Some apps need executable heap (e.g. JITs).
— Can be easily bypassed using Return Oriented Programming (ROP)

Dan Boneh

Examples: DEP controls in Windows

Performance Options

==

[Yisual Effects I Advanced | Data Execution Prevention

_ : Data Execution Prevention (DEP) helps protect

against damage from viruses and other security
threats. How does it work?

@ Turn on DEP for essential Windows programs and services
only

() Turn on DEP for all programs and services except those I
select:

Data Execution Prevention - Microsoft Windows @

To help protect your computer, Windows has closed this program.

- ;I Name: Windows Explorer
:)g Publisher: Microsoft Corporation

[Close Message |

Data Execution Prevention helps protect against damage from viruses and other
security threats. What should I do?

Aadd...

Remove

Your computer's processor supports hardware-based DEP.

DEP terminating a program

[OK] [Cancel] [Apply]

Dan Boneh

Attack: Return Oriented Programming (ROP)

Control hijacking without injecting code:

stack libc.so

ROP: in more detail

To run /bin/sh we must direct stdin and stdout to the socket:

dup2(s, 0) // map stdin to socket
dup2(s, 1) // map stdout to socket
execve("/bin/sh", 0, 0);

execve("/bin/sh")
ret

dup2(s, 1)
ret

Gadgets in victim code: I

Stack (set by attacker):
ret-addr

Stack pointer moves up on pop

Dan Boneh

ROP: in even more detail

dup2(s,0) implemented as a sequence of gadgets in victim code:

0x408100 0x408200 0x408300 0x408400
5f | pop rdi Se| pop rsi pop rax syscall
c3 ret c3| ret ret ret

Stack (by attacker):

overflow-str | 0x408100 | s | 0x408200| 0| 0x408300| 33 | 0x408400

ret-addr (rdi «—s) (rsi «<— 0) (rax «— 33)
syscall #33

Dan Boneh

What to do?? Randomization

ASLR: (Address Space Layout Randomization)

— Randomly shift location of all code in process memory
= Attacker cannot jump directly to exec function

— Deployment: (/DynamicBase)
 Windows 7: 8 bits of randomness for DLLs
— aligned to 64K page in a 16MB region = 256 choices
 Windows 8: 24 bits of randomness on 64-bit processors

Other randomization ideas (not used in practice):

— Sys-call randomization: randomize sys-call id’s

— Instruction Set Randomization (ISR)

ASLR Example

Booting twice loads libraries into different locations:

ntlanman.dll O=6D7F0000 | Microsoft® Lan Manager
ntrnarta. dll O=75370000 | “Windows NT MARTA provider
ntshruidll O=6F2C0000 | Shell extensions for sharing
ole32.dll O=76160000 | Microsoft OLE for Windows
ntlanman.dll Ox6DAS0000 | Microsoft® Lan Manager
ntrnarta. dll Ox75660000 | Windows NT MARTA provider
ntshrui.dll 0=x6D3SD0000 | Shell extensions for sharnng
ole32.dll 0x763C0000 | Microsoft OLE for Windows

Note: everythingin process memory must be randomly shifted

stack, heap, shared libs, base image

* Win 8 Force ASLR:

ensures all loaded modules use ASLR

Dan Boneh

A very different idea: kBouncer

pop rdi
ret

Observation:
e ret returns to an address that does not follow a call

S

pop rsi
ret

S

pop rax
ret

S

syscall
ret

abnormal execution sequence

=~
oY
®)
c
>
2]
)
—

kernel]

Idea: before a syscall, check that every prior ret is not abnormal

* How:

use Intel’s Last Branch Recording (LBR)

A very different idea: kBouncer

pop rdi J pop rsi /f' pop rax J’ syscall kernel
ret ret ret &L

Inte’s Last Branch Recording (LBR):
» store 16 last executed branches in a set of on-chip registers (MSR)

=~
oY
®)
c
>
2]
)
—

* read using rdmsr instruction from privileged mode

kBouncer: before entering kernel, verify that last 16 rets are normal
* Requires no app. code changes, and minimal overhead
* Limitations: attacker can ensure 16 calls prior to syscall are valid

Dan Boneh

Control Hijacking Defenses

Hardening the
executable

Run time checking: StackGuard

* Many run-time checking techniques ...
— we only discuss methods relevant to overflow protection

* Solution 1: StackGuard
— Run time tests for stack integrity.

— Embed “canaries” in stack frames and verify their integrity
prior to function return.

Frame 2 Frame 1

top
<<

stack

Dan Boneh

Canary Types

e Random canary:
— Random string chosen at program startup.

— Insert canary string into every stack frame.

— Verify canary before returning from function.
e Exit program if canary changed. Turns potential exploit into DoS.

— To corrupt, attacker must learn current random string.

e Terminator canary: Canary = {0, newline, linefeed, EOF}

— String functions will not copy beyond terminator.
— Attacker cannot use string functions to corrupt stack.

Dan Boneh

StackGuard (Cont.)

e StackGuard implemented as a GCC patch

— Program must be recompiled

 Minimal performance effects: 8% for Apache

* Note: Canaries do not provide full protection

— Some stack smashing attacks leave canaries unchanged

StackGuard enhancements: ProPolice

* ProPolice - sincegcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

String args
Growth ret addr Protects pointer args and local

SFP pointers from a buffer overflow

Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays

copy of pointer args

Dan Boneh

MS Visual StUd|O /GS [since 2003]

Compiler /GS option:
— Combination of ProPolice and Random canary.
— If cookie mismatch, default behavior is to call _exit(3)

Function prolog: Function epilog:
sub esp,8 //allocate 8 bytes for cookie mov ecx, DWORD PTR [esp+8]
mov eax, DWORD PTR ___security_cookie Xor ecx, esp
Xor eax, esp // xor cookie with current esp call @__security_check_cookie@4
mov DWORD PTR [esp+8], eax // save in stack add esp, 8

Enhanced /GS in Visual Studio 2010:

— /GS protection added to all functions, unless can be proven unnecessary

Dan Boneh

/GS stack frame

S
trin
; —
Growth
Canary protects ret-addr and
ey
exception handler frame
exception handlers -
Stack local string buffers
Growth local non-buffer variables } pointers, but no arrays
copy of pointer args

Evading /GS with exception handlers

* When exception is thrown, dispatcher walks up exception list
until handler is found (else use default handler)

After overflow: handler points to attacker’s code
exception triggered = control hijack

Main point: exception is triggered before canary is checked

Oxffffffff
\ SEH frame SEH frame
1§ i
' — - high
ptr to I g
next handler I next ttack code next handler mem

Defenses: SAFESEH and SEHOP

* /SAFESEH: linker flag
— Linker produces a binary with a table of safe exception handlers
— System will not jump to exception handler not on list

 /SEHOP: platform defense (since win vista SP1)

— Observation: SEH attacks typically corrupt the “next” entry in SEH list.
— SEHOP: add a dummy record at top of SEH list

— When exception occurs, dispatcher walks up list and verifies dummy
record is there. If not, terminates process.

Dan Boneh

Summary: Canaries are not full proof

Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

— Heap-based attacks still possible
— Integer overflow attacks still possible

— /GS by itself does not prevent Exception Handling attacks
(also need SAFESEH and SEHOP)

Even worse: canary extraction

A common design for crash recovery:

 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

AANARY d4d crash
Danger:

o
[
®
Q
—
()
—~+
=

* canary extraction
byte by byte

ret
B
A NARY 2ddr crash

ret

C
A NARY 2ddr No crash

ret
cee CA NARY No crash

addr

Dan Boneh

Similarly: extract ASLR randomness

A common design for crash recovery:
 When process crashes, restart automatically (for availability)
e Often canary is unchanged (reason: relaunch using fork)

Danger: cos AANARY a:je;r crash
Extract ret-addr to
de-randomize BANARY a:je;r crash
code location

ret
Extract stack CATNA RN o BLEEEs
function pointers to =
de-randomize heap | eee CANARY . EASECEL
Dan Boneh

What if can’t recompile: Libsafe

e Solution 2: Libsafe (Avaya Labs)

— Dynamically loaded libra ry (no need to recompile app.)

— Intercepts calls to strcpy (dest, src)

* Validates sufficient space in current stack frame:
| frame-pointer — dest| > strlen(src)

* If so, does strcpy. Otherwise, terminates application

to
sfp ret-addr dest src buf sfp ret-addr ofl-o

stack

— I _/

Libsafg strcpy main

Dan Boneh

More methods: Shadow Stack

Shadow Stack: keep a copy of the stack in memory
* Oncall: pushret-address to shadow stack on call

* Onret: checkthattop of shadow stack is equal to
ret-address on stack. Crash if not.

e Security: memory corruption should not corrupt shadow stack

Shadow stack using Intel CET:
* New register SSP: shadow stack pointer

* Shadow stack pages marked by a new “shadow stack” attribute:

I”

only “call” and “ret” can read/write these pages

Control Hijacking Defenses

Control Flow
Integrity (CFl)

Control flow integrity (CFl) o,

Ultimate Goal: ensure control flows as specified by code’s flow graph

void HandshakeHandler(Session *s, char *pkt) {

s->hdlr(s, pkt)

Compile time: build list of possible call targets

Run time: before call, check validity of s->hdIr

Lots of academic research on CFl systems:
 CCFIR (2013), kBouncer (2013), FECFI (2014), CSCFI (2015), ...

and many attacks ...

Control Flow Guard (CFG) (windows 10)

Poor man’s version of CFl:

* Protects indirect calls by checking against a bitmask of all valid
function entry points in executable

rep stosd

mov esi, |esl] =
mov ecx, esi ; Tariff—”’__’,,,,,——————f
push 1

call @ guard check_icall@4 ; gquard check icall(x)
call esi

add esp, 4

Xor eax, eax

ensures target is
the entry point of a
function

Dan Boneh

CFl using Intel CET

New EndBranch (ENDBR64) instruction:

After an indirect JMP or CALL:
the next instruction in the
instruction stream must be EndBranch

If not, then trigger a #CP fault x
and halt execution

Ensures an indirect JMP or CALL can only go ->
to a valid target address = no func. ptr. hijack

(compiler inserts EndBranch at valid locations)

%

call eax

%

endbranch

%

add ebp, 4

%

Control Flow Guard (CFG) and CET

Poor ! ' et
* Prne Do not prevent attacker from causing valid
fu 3 jump to a valid wrong function
vep o ° Hard to build accurate control
. S
nov flow graph statically £
push
call @ Quarad_CNeckR_Icariey _guaru_cnecx_lcall(x;J}
call esi
add esp, 4

X0r

eax, eax

An example

void HandshakeHandler(Session *s, char *pkt) {
s->hdIr = &LoginHandler;

.. Buffer overflow over Session struct ... (— ————

}

void LoginHandler(Session *s, char *pkt) {
bool auth = CheckCredentials(pkt);

s->dhandler = &DataHandler;
}

void DataHandler(Session *s, char *pkt);

Attacker controls
handler

static CFl: attacker can call

DataHandler to
bypass authentication

Dan Boneh

Cryptographic Control Flow Integrity (CCFl)
(ARM pointer authentication)

Threat model: attacker can read/write anywhere in memory,

program should not deviate from its control flow graph

CCFl approach: Every time a jump address is written/copied anywhere in memory:
compute 64-bit AES-MAC and append to address

On heap: tag = AES(k, (jump-address, 0Il source-address))

on stack: tag= AES(k, (jump-address, 1 Il stack-frame))
Before following address, verify AES-MAC and crash if invalid

Where to store key k? In xmm registers (not memory)

Dan Boneh

Back to the example

void HandshakeHandler(Session *s, char *pkt) {
s->hdIr = &LoginHandler;
... Buffer overflow in Session struct ... <—

Attacker controls

} handler
void LoginHandler(Session *s, char *pkt) { CCEl: Attacker cannot
bool auth = CheckCredentials(pkt); create a valid MAC for
DataHandler add
s->dhandler = &DataHandler; ararancrer agaress

}

void DataHandler(Session *s, char *pkt);

Dan Boneh

THE END

