
Dan Boneh

CS155

Computer Security

Course overview

Dan Boneh

Admin
• Course web site: https://cs155.Stanford.edu

• Profs: Dan Boneh and Zakir Durumeric

• Three programming projects (pairs) and two written homeworks

• Project #1 is posted. Please attend section this Friday!

• Use Piazza and Gradescope

• Automatic 72 hour extension

• No final exam this year

Dan Boneh

Live lectures on Zoom

ask
questions

Lectures are recorded … posted on canvas

Dan Boneh

The computer security problem
• Lots of buggy software

• Social engineering is very effective

• Money can be made from finding and exploiting vulns.

1. Marketplace for exploits

2. Marketplace for owned machines (PPI)

3. Many methods to profit from owned machines
current state of computer security

Dan Bonehsource: https://www.cvedetails.com/top-50-products.php?year=2019

Top 10 products by total number of “distinct” vulnerabilities in 2019

Dan Boneh

Vulnerable applications being exploited

Source: Kaspersky Security Bulletin 2017

Browser

Android

Office

Java

Dan Boneh

Why so many security bugs? Case study: Zoom client

Users have an expectation of privacy. But:
(1) Problems with crypto (Marczak and Scott-Railton, April 2020)

(2) How not to save a user click (J. Leitschuh, July 2019)

user’s MacOS system

Browser Zoom app
launch

zoom.com

https://zoom.com/[meeting]

Dan Boneh

Browser Zoom app

Why so many security bugs? Case study: Zoom client

Users have an expectation of privacy. But:
(1) Problems with crypto (Marczak and Scott-Railton, April 2020)

(2) How not to save a user clicks (J. Leitschuh, July 2019)

user’s MacOS system

launch
Can we bypass the

security dialog?
zoom.com

https://zoom.com/[meeting]

Dan Boneh

Browser Zoom
web server

Why so many security bugs? Case study: Zoom client

Local Zoom web server listens on port localhost:19421
• To launch app: web page from zoom.com tells

browser to send an HTTP request to the local web server
• Web requests do not require a dialog …

http://localhost:19421/launch?action=join&confno=[confrence number]

Can this be attacked?

zoom.com

Dan Boneh

Browser Zoom
web server

The problem [J. Leitschuh, July 2019]

Any web site can send a request to the local web server
• Joins users to conference w/o user’s knowledge!

What happened next? Responsible disclosure, 90 days (CVE-2019-13450).

• Fixed by Zoom. Web server removed by Apple’s MRT tool.

http://localhost:19421/launch?action=join&confno=[confrence number]

evil.com

Dan Boneh

Why so many security bugs? Case study: Zoom client

Users have an expectation of privacy. But:

(1) Problems with crypto (Marczak and Scott-Railton, April 2020)

(2) How not to save a user click (J. Leitschuh, July 2019)

(3) Disable MacOS hardened runtime (P. Wardle, April 2020)

Defends against code injection, library hijacking,
and process memory space tampering.

Once user gives Zoom access to camera and mic,
MacOS ensures that entire application code does not change

Dan Boneh

What happens if protection is disabled?

Can this be abused?

requires user
approval

Dan Boneh

The impact [Wardle, 4/2020]

Zoom
app

user’s MacOS system

libssl.1.0.0

curl64

⋮

dynamic libraries loaded at Zoom startup

User approved access
to camera & mic

Dan Boneh

The impact [Wardle, 4/2020]

Zoom
app

user’s MacOS system

libssl.1.0.0

curl64

⋮

hardened runtime
does not notify user
of change to libssl!

libssl.1.0.0

Attacker installs malware library that proxies libssl.
⇒ has access to camera & mic

disable-library-validation:true

Dan Boneh

Goals for this course

• Understand exploit techniques
– Learn to defend and prevent common exploits

• Understand the available security tools

• Learn to architect secure systems

Dan Boneh

This course
Part 1: basics (architecting for security)

• Securing apps, OS, and legacy code:
sandboxing, access control, and security testing

Part 2: Web security (defending against a web attacker)

• Building robust web sites, understand the browser security model

Part 3: network security (defending against a network attacker)

• Monitoring and architecting secure networks.

Part 4: securing mobile applications

Dan Boneh

Don’t try this at home !

Dan Boneh

Introduction

What motivates
attackers?

… economics

Dan Boneh

Why compromise systems?
1. IP address and bandwidth stealing

Attacker’s goal: look like a random Internet user

Use the IP address of infected machine or phone for:

• Spam (e.g. the storm botnet)
Spamalytics: 1:12M pharma spams leads to purchase

1:260K greeting card spams leads to infection

• Denial of Service: Services: 1 hour (20$), 24 hours (100$)

• Click fraud (e.g. Clickbot.a)

Dan Boneh

Why compromise systems?
2. Steal user credentials

keylog for banking passwords, corporate passwords, gaming pwds

Example: SilentBanker (and many like it)

Bank
Malware injects

Javascript
Bank sends login page
needed to log in

When user submits
information, also sent to
attacker

User requests login page

Similar mechanism used
by Zeus botnet, and others

Man-in-the-Browser (MITB)

Dan Boneh

Lots of financial malware

Source: Kaspersky Security Bulletin 2017

• records banking passwords
via keylogger

• spread via spam email and
hacked web sites

• maintains access to PC for
future installs

Dan Boneh

Similar attacks on mobile devices
Example: FinSpy.

• Works on iOS and Android (and Windows)

• once installed: collects contacts, call history, geolocation,
texts, messages in encrypted chat apps, …

• How installed?

– Android pre-2017: links in SMS / links in E-mail

– iOS and Android post 2017: physical access

Dan Boneh

Why own machines: 3. Ransomware

a worldwide problem

• Worm spreads via a vuln.
in SMB (port 445)

• Apr. 14, 2017: Eternalblue vuln.
released by ShadowBrokers

• May 12, 2017: Worm detected
(3 weeks to weaponize)

Dan Boneh

W
an

na
Cr

y
ra

ns
om

w
ar

e

Dan Boneh

Server-side attacks
• Data theft: credit card numbers, intellectual property

– Example: Equifax (July 2017), ≈ 143M “customer” data impacted
• Exploited known vulnerability in Apache Struts (RCE)

– Many many similar attacks since 2000

• Political motivation:
– DNC, Tunisia Facebook (Feb. 2011), GitHub (Mar. 2015)

• Infect visiting users

Dan Boneh

Infecting visiting users. Example: Mpack

• PHP-based tools installed on compromised web sites
– Embedded as an iframe on infected page
– Infects browsers that visit site

• Features
– management console provides stats on infection rates
– Sold for several 100$
– Customer care can be purchased, one-year support contract

• Impact: 500,000 infected sites (compromised via SQL injection)

– Several defenses: e.g. Google safe browsing

Dan Boneh

Data theft: what is stolen (2012-2015)

Source: California breach notification report, 2015

Dan Boneh

Physical document
loss

How companies lose customer data

Source: PrivacyRights.org, 2020

lost/stolen laptops or servers
malware/hacking

Accidental disclosure

How do we have this data?

21%

32%17%

22%

8%

insider misuse/attack

Dan Boneh

Introduction

The Marketplace for
Vulnerabilities

Dan Boneh

Marketplace for Vulnerabilities
Option 1: bug bounty programs (many)

• Google Vulnerability Reward Program: up to $31,337
• Microsoft Bounty Program: up to $100K
• Apple Bug Bounty program: up to $200K
• Stanford bug bounty program: up to $1K
• Pwn2Own competition: $15K

Option 2:
• Zerodium: up to $2M for iOS, $2.5M for Android (2019)

• … many others

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution
LPE: local privilege escalation
SBX: sandbox escape

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution
LPE: local privilege escalation
SBX: sandbox escape

Dan Boneh

Why buy 0days?

https://zerodium.com/faq.html

Dan Boneh

Ken Thompson’s clever Trojan

(CACM Aug. 1984)

Turing award lecture

What code can we trust?

Dan Boneh

What code can we trust?
Can we trust the “login” program in a Linux distribution? (e.g. Ubuntu)

• No! the login program may have a backdoor
⇾ records my password as I type it

• Solution: recompile login program from source code

Can we trust the login source code?

• No! but we can inspect the code, then recompile

Dan Boneh

Can we trust the compiler?
No! Example malicious compiler code:

compile(s) {
if (match(s, “login-program”)) {

compile(“login-backdoor”);
return

}
/* regular compilation */

}

Dan Boneh

What to do?
Solution: inspect compiler source code,

then recompile the compiler

Problem: C compiler is itself written in C, compiles itself

What if compiler binary has a backdoor?

Dan Boneh

Thompson’s clever backdoor
Attack step 1: change compiler source code:

compile(s) {
if (match(s, “login-program”)) {

compile(“login-backdoor”);
return

}
if (match(s, “compiler-program”)) {

compile(“compiler-backdoor”);
return

}
/* regular compilation */

}

(*)

Dan Boneh

Thompson’s clever backdoor
Attack step 2:

• Compile modified compiler ⇒ compiler binary

• Restore compiler source to original state

Now: inspecting compiler source reveals nothing unusual

… but compiling compiler gives a corrupt compiler binary

Complication: compiler-backdoor needs to include all of (*)

Dan Boneh

What can we trust?
I order a laptop by mail. When it arrives, what can I trust on it?

• Applications and/or operating system may be backdoored
⇒ solution: reinstall OS and applications

• How to reinstall? Can’t trust OS to reinstall the OS.
⇒ Boot Tails from a USB drive (Debian)

• Need to trust pre-boot BIOS,UEFI code. Can we trust it?
⇒ No! (e.g. ShadowHammer operation in 2018)

• Can we trust the motherboard? Software updates?

Dan Boneh

So, what can we trust?
Sadly, nothing … anything can be compromised
• but then we can’t make progress

Trusted Computing Base (TCB)
• Assume some minimal part of the system is not compromised
• Then build a secure environment on top of that

will see how during the course.

Dan Boneh

THE END

Next time: control hijacking vulnerabilities

