
Some Lessons from Deploying Communications

Security at Scale

Eric Rescorla

Mozilla

ekr@rtfm.com

1



Our Problem Statement

Individuals security and privacy on the internet are

fundamental and must not be treated as optional.

— Mozilla Manifesto, Principle #4

[W]e assume that the attacker has nearly complete control of

the communications channel over which the end-systems

communicate. This means that the attacker can read any

PDU (Protocol Data Unit) on the network and undetectably

remove, change, or inject forged packets onto the wire.

— RFC 3552

2



Historical Situation

• Good news

– Cryptography offers a way out of this box

– We have solutions for endpoint authentication, confidentiality,

message integrity, etc.

• Bad news

– Early Internet built almost entirely without cryptography

– Why? Patents, computational cost, export controls, missing

authentication infrastructure

• Need to somehow retrofit security onto this system

– Whoever touched things last gets blamed

3



HTTPS Deployment

4



WebPKI

5



Messaging Security

6



What is Transport Layer Security?

• Probably the Internet’s most important security protocol

• Designed over 20 years ago by Netscape for Web transactions

– Back then, called Secure Sockets Layer

• But used for just about everything you can think of

– HTTP

– SSL-VPNs

– E-mail

– Voice/video

– IoT

• Maintained by the Internet Engineering Task Force∗

• Really showing its age as of 2015
∗https://www.ietf.org/, https://tlswg.org/

7



TLS 1.2 Attacks∗

∗Slide from van der Merwe and Paterson

8



Goals for TLS 1.3

Clean up: Remove unused or unsafe features

Improve privacy: Encrypt more of the handshake

Improve latency: Target: 1-RTT handshake for näıve clients;

0-RTT handshake for repeat connections

Continuity: Maintain existing important use cases

Security Assurance: Have analysis to support our work

9



TLS Structure

• Handshake protocol

– Establish shared keys (typically using public key cryptography)

– Negotiate algorithms, modes, parameters

– Authenticate one or both sides

• Record protocol

– Carry individual messages

– Protected under symmetric keys

• This is a common design (SSH, IPsec, etc.)

10



Reminder: TLS 1.2 Full Handshake

Client Server

ClientHello + Extensions //

ServerHello + session id + Extensions, Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange, CertificateVerify*

[ChangeCipherSpec], Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //

11



Reminder: TLS 1.2 Resumed Handshake

Client Server

ClientHello + session id + Extensions //

ServerHello + session id + Extensions, [ChangeCipherSpec], Finished
oo

[ChangeCipherSpec], Finished
//

oo Application Data //

12



Removed Features

• Static RSA

• Custom (EC)DHE groups

• Compression

• Renegotiation∗

• Non-AEAD ciphers

• Simplified resumption

∗Special accommodation for inline client authentication

13



Optimizing Through Optimism

• TLS 1.2 assumed that the client knew nothing

– First round trip mostly consumed by learning server capabilities

• TLS 1.3 narrows the range of options

– Only (EC)DHE

– Limited number of groups

• Client can make a good guess at server’s capabilities

– Pick its favorite groups and send DH share(s)

14



TLS 1.3 1-RTT Handshake Skeleton

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, Certificate, CertificateVerify, Finished
oo

Application dataoo

Finished //

oo Application data //

• Server can write on its first flight (e.g., banners or H2 SETTINGS)

• Client can write on second flight

• Server certificate is encrypted

– Only secure against passive attackers

15



TLS 1.3 1-RTT Handshake w/ Client Authentication

Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

Certificate, CertificateVerify, Finished //

oo Application data //

• Client certificate is encrypted

• Secure against an active attacker

16



Pre-Shared Keys and Resumption

• TLS 1.2 already supported a Pre-Shared Key (PSK) mode

– Used for IoT-type applications

• TLS 1.3 merges PSK and resumption

– Server provides a key label

– ... bound to a key derived from the handshake

– Label can be a “ticket” (encryption of the key)

• Two major modes

– Pure PSK

– PSK + (EC)DHE

17



Initial Handshake:

ClientHello

+ key_share -------->

ServerHello

...

{Finished}

<-------- [Application Data*]

...

{Finished} -------->

<-------- [NewSessionTicket]

[Application Data] <-------> [Application Data]

Subsequent Handshake:

ClientHello

+ pre_shared_key

+ key_share* -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

<-------- [Application Data*]

{Finished} -------->

[Application Data] <-------> [Application Data]

18



0-RTT Handshake

• Basic observation: once we have established a ticket we have a

shared key

– With someone we have authenticated

• We can send application data on the first flight

• TLS 1.3 used to have a DH-based 0-RTT mode

– Got stripped out due to academic and implementor feedback

19



TLS 1.3 0-RTT Handshake Skeleton

ClientHello

+ early_data

+ key_share*

+ psk_key_exchange_modes

+ pre_shared_key

(Application Data*) -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

+ early_data*

{Finished}

<-------- [Application Data*]

(EndOfEarlyData)

{Finished} -------->

[Application Data] <-------> [Application Data]

20



Server Version Intolerance

• TLS 1.2 uses a simple version negotiation scheme

– Client provides it’s maximum version in ClientHello

– Server chooses min(ClientV ersion, ServerV ersion)

• Unfortunately, about 1% of servers are intolerant of versions > 1.2

– This makes it unsafe to offer TLS 1.3

• Fix

– ClientHello.Version = 1.2

– Include a TLS extension that lists all versions the client

supports

– Nearly all servers ignore unknown extensions

21



The Great Middlebox Mess

• Some middleboxes break when you negotiate TLS 1.3

• Error rates (Firefox Beta versus Cloudflare)

– 2.2% for TLS 1.2

– 3.9% for TLS 1.3

• What’s happening?

– They’re trying to look at handshake details

– Even when they don’t know the version

• This means you need fallback to deploy TLS 1.3

• ... which also breaks anti-downgrade

• Only found this out right when everything else was done

– Only see it when you try to deploy

22



What’s going on here?

• Not totally clear...

– A lot of different vendors (so probably a lot of things)

– Chrome got a few devices in the lab

– ... but not all of them

• Some things we know

– Incomplete MITM

– Protocol enforcement (“this doesn’t look like TLS 1.2”...)

23



The fix: TLS 1.3 looks like TLS 1.2 Resumption

ClientHello + session id //

ServerHello + session id echo, [ChangeCipherSpecs]

CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

[ChangeCipherSpecs]

Certificate, CertificateVerify, Finished
//

oo Application data //

• CCS is just a dummy and doesn’t affect the state machine

– Recipient ignores it

• Middlebox expects everything after CCS to be encrypted

– And doesn’t try to look inside

• This gives comparable error rates between 1.2 and 1.3 → No fallback

24



Incomplete MITM Problems Remain

• A MITM device is really a back-to-back proxy

• Some MITMs try to do less

– Reuse pieces of the ClientHello

– Filter based on server certificate

– ... this usually ends badly

• Example: Cisco Firepower

– TLS 1.3 uses the server Random value for anti-downgrade

– Firepower devices forwarded the server Random value, but

negotiate TLS 1.2

– This looks like an attack → Fail

– Reported Dec 2017, fixed in 2018

25



Static RSA, Passive Inspection, and You

• A lot of enterprises do TLS passive inspection

– Inspection box attached to a span port

– You give the RSA private key to the inspection box

– Decrypt the EPMS and hence the whole connection?∗

• TLS 1.3 breaks this (no static RSA)

• Lot of requests from enterprises to do something

– But we didn’t.

– (they don’t really need our help)

∗Don’t forget to disable (EC)DHE cipher suites

26



Where are we now

• RFC Published August 10, 2018

• Browsers: Firefox, Chrome, Safari

• Server operators: Akamai, Cloudflare. Facebook, Google, Apple

• Libraries: OpenSSL, BoringSSL, NSS, Fizz, PicoTLS, ...

• ≈ 20% of Firefox connections

• > 50% of Facebook connections!

27



QUIC

• TLS 1.3 is a big improvement

– But it still runs over TCP

• A new transport protocol can do better

– Iterate more quickly

– Shorten the handshake (TFO only sort-of works)

– Multiplexing without head-of-line blocking

– Protect more of the protocol from attack

28



QUIC Architecture

29



Quick iteration

• QUIC can be implemented in user space

• This means we can roll out new versions quickly

– Without waiting for the operating system

– Chrome and Firefox ship every 6-8 weeks

• This capability got used extensively for TLS 1.3 and is expected

for QUIC

30



True 0-RTT

• We want to send data in the first flight

– TLS 1.3 lets you send application data with the first TCP data

– ... but this is after the TCP handshake

– TCP Fast Open in principle allows this

– ... but middleboxes get in the way

• Layering on top of UDP helps

– Can just send data in first flight

– Middleboxes don’t try to “help”

– ... Though sometimes they block stuff

31



Multiplexing without head-of-line blocking

• HTTP/2 had multiplexing (streams)

– But all the streams run over the same TCP/TLS channel

– This means you get head-of-line blocking on packet loss

• QUIC runs over UDP and provides its own reliability

– This means no head-of-line blocking in typical scenarios∗

– Biggest improvement in cases of high packet loss

∗Some exceptions may apply when one stream depends on another; also the

handshake

32



Protect More of the Protocol From Attack

• TLS 1.3 runs over TCP

– People can still attack the TCP channel

– ... e.g., RST attacks

• Everything in QUIC is encrypted

– Including the transport meta-information (packet numbers,

stream offsets, ACKs, errors, etc.)

– Attackers (or network operators) can’t see connection state

– ... or tear down the connection

33



Ossification Defenses

• Network middleboxes tend to assume protocols are invariant

– ... and fail unpredictably when those invariants are violated (cf.

TLS 1.3 version problem)

• QUIC ossification countermeasures

– Encrypt as much as possible

– Publish explicit protocol invariants

– “Grease” reserved bits

34



QUIC Packet Headers∗

∗Slightly out of date...

35



Really, it’s all encrypted

• Handshake is encrypted with a deterministic key

– Derived from the connection IDs

– And a per-QUIC version constant

– Middleboxes can’t decrypt future unknown versions of QUIC

• Most exposed reserved bits are “greased”

– Send random bits in their place

– Ensures that endpoints and middleboxes don’t depend on them

– Authenticated so they can’t be changed

36



What about the QUIC version number?

• The version number in the handshake is in the clear

– Concerns that middleboxes will enforce that

– ... and terminate QUIC connections with other versions

• Potential approaches

– Remove the version number and use trial decryption to detect

version

– Distribute “alternative” versions somehow

– Distribute keys to encrypt more of the handshake somehow

– Do nothing?

• This is currently an unsolved problem

https://github.com/quicwg/base-drafts/issues/2496

37



DNS Security is Bad

• Most clients get DNS from their network

– Server delivered over unauthenticated DHCP

– Unencrypted DNS transport to resolver

– No way to know resolver’s security or Mprivacy policy

• Lots of security and privacy problems here

– On-network attackers

– Attacks by the resolver

∗ Surveillance

∗ Censorship

∗ Typo “correction”

– Privacy-hostile behaviors by the resolver

(EDNS0-Client-Subnet, no QMIN, ...)

38



An aside: Why not DNSSEC?

• Reminder: DNSSEC is a PKI for domain names

– Rooted in the DNS root

• DNSSEC doesn’t provide privacy

• Still possible to do blocking

– Forge an NXDOMAIN

– Non-DNSSEC clients (almost everyone) are fooled

– DNSSEC clients can see something is wrong

∗ But they still can’t recover

39



DNSSEC Deployment Issues

• Almost all current DNSSEC validation is by the resolver

– Comcast, Google, Cloudflare, Quad9 all do this

• Our threat model includes the resolver

– So validation has to be at the endpoint

• Problem: too many false positives

– Many middleboxes tamper with DNS – or can’t do large

records correctly

∗ EDNS(0) and DNS/TCP not universally supported

∗ In 2015 TXT records failed about 4-5% of the time∗

– This is indistinguishable from an attack

– Hard-failing on DNSSEC validation failure is infeasible

• Maybe DoH will fix this?
∗https://www.imperialviolet.org/2015/01/17/notdane.html

40



DNS over HTTPS

• What it sounds like

– DNS packets over HTTPS

• Technically just a new transport for DNS

– Harder to block

– Can mux HTTP and DNS traffic

• But often conflated with Trusted Recursive Resolvers

– Specific DoH deployment model

– Application picks a resolver

– ... based on application developer’s relationship with resolver

41



DoH/TRR in Firefox

• DoH support in Firefox (disabled by default)

• Currently performing experiments to determine viability

– Things are looking pretty good so far

– Plan to ship it by default once we’re confident

• Currently use Cloudflare’s resolver

– Cloudflare signed up to a strong privacy policy

– Looking for other partners (especially outside the US)

42



DOH Performance

43



One small step...

• This is an improvement

– ... but it still doesn’t fix everything

• And comes with costs

– Increased centralization

– No competition for DoH service

– Potentially suboptimal routing

– Makes network filtering much harder

44



DNS Filtering

• A lot of networks filter DNS

– Enterprise policy enforcement

– Malware and C&C blocking

– Parental controls (typically on adult content)

– National level blocking

• This looks just like an attacker

– And in some cases (e.g., censorship) it is

– But sometimes it’s what the user wanted

45



Split Horizon

Firewall

Internal 
Machine

Internal 
Machine

External 
Machine

External DNS 
Server

www.example.com? IP=1.2.3.4

Internal DNS 
Server

Internal 
Machine

www.example.com? IP=10.0.0.1

46



Split Horizon after DoH

Firewall

Internal 
Machine

Internal 
Machine

External 
Machine

External DNS 
Server

www.example.com? IP=1.2.3.4

Internal DNS 
Server

Internal 
Machine

www.example.com? IP=10.0.0.1

DoH Server

IP=1.2.3.4

www.example.com? IP=1.2.3.4

47



Unexpected Behaviors

• Ideally enable DoH by default

– Allow the user to choose a different server or disable DoH

– Allow “enterprise” configuration or disabling of DoH

– Allow networks to pick out of the trusted resolver set

• Unfortunately machines aren’t configured this way now

– So this breaks filtering whether the user wants that or not

– Heuristically disable DoH?

∗ When devices are under central management

∗ When we detect blocking

· But this makes blocking (and hence censorship) easy

• Still working on our rollout plan

48



Encrypted SNI

• Server Name Indication (SNI) enables TLS virtual hosting

– ... but leaks your destination to the network

– even when multiple servers on the same IP

• TLS 1.3 encrypts the server certificate but not the SNI

– Not because we didn’t try

– Just couldn’t figure out how to do it well

– Some good ideas about six months ago

49



ESNI Architecture

50



ESNI in TLS 1.3

ClientHello [Random, gc, E(Kpub, SNI +Nonce, gc)]
//

ServerHello [Random, gs]

EncryptedExtensions [Nonce], Certificate, CertificateVerify, Finished
oo

Application dataoo

Finished //

oo Application data //

• Client sends SNI, nonce encrypted under server public key

• Server echoes nonce

• This is TLS 1.3 only (for real!)

51



Multi-CDN Issues

• Many sites are served by multiple CDNs

– Use a third-party service to switch between them

– Usually uses a CNAME record which points to either

cdn1.com or cdn2.com

• Possible to get inconsistent records

– ESNI keys for CDN1 and addresses (A records) for CDN2

– This will cause hard failure

• No good fixes

– Combined record with ESNI keys and A record

– Carry A record “filters” with ESNI keys

∗ Retry on filter failure

• A lot more coordination between DNS and TLS than we would like

52



ESNI Status

• IETF WG draft

• Already live on Cloudflare

• Available in Firefox Nightly

• Probably still a lot of churn before it’s done

• Can also be used with QUIC

53



A Recent Emergency

• Firefox is an extensible browser

– Users can download add-ons that extend the behavior of

Firefox

• All add-ons have to be signed by Mozilla

– Enforce policies

– Allow for blocklisting extensions which we know to be bad

• Signatures authorized by a certificate chain tied to a trust anchor

in the browser

– May 4, just after midnight UTC, one of the intermediate

certificates expired

– ... oops

54



This is what failure looks like

55



Add-on Certificate Hierarchy

56



Damage Limitation

• Add-ons are re-checked on a 24-hour clock

– So many users still had working add-ons

– This would get worse as time went by

• First step: remotely disable add-on checking

– This stabilizes the situation for unaffected users

57



Why not just re-sign everything?

• Too slow

– About 15,000 add-ons

– The signing system isn’t designed for bulk signing

• Too hard to distribute the new add-ons

– Add-ons update on a 24-hour schedule

– Some add-ons are manually installed

• Needed an alternative approach

58



Some surprising facts about certificate validation

• Each add-on comes with all the certificates you need to validate it

• But these aren’t used directly

– All the certificates are inserted into a database

– Then we try to construct a chain working back from the leaf

∗ Using all available certificates

∗ ... and trying multiple paths in parallel

• This implies a potential fix

– Make a new valid certificate with the same name and key

– Remotely install it in Firefox

– Profit

59



Repaired Certificate Hierarchy

60



Remote installation

• Use a new add-on (“system add-on”)

– Signed with the new certificate

• Add-on does two things

– Installs new certificate in the permanent database∗

– Re-verifies every add-on

∗ Which should re-activate them

• Fix developed and deployed in 9 hours

– Using our “Studies” system

∗This isn’t specially trusted, it’s just there

61



Mostly a success

• Not all users have Studies enabled

– People who disabled Telemetry/Studies (especially in

enterprised)

– Firefox on Android

– Some downstream builds

– People behind MITM proxies∗

– Very old versions of Firefox

• Need a dot release to fix most of these

• We had some bugs (remember, this was all done in 9 hours)

∗They run everything

62



An interesting bug

• We install the certificate and then re-check all add-ons

• What happens if the certificate installation fails?

• Result: add-on check fails and all add-ons are disabled

– No-op for people who were unaffected

– But breaks everyone we had protected by disabling re-checking

• This is a case we hadn’t anticipated

63



Final Thoughts

• The deployment universe is incredible hostile

– Almost anything you do will probably break something

– Need extensive measurement and experiment/testing to keep

breakage within acceptable limits

• Many network elements take advantage of plaintext

– This makes it very hard to change things

– ... even when they’re not trying to stop you

– Solution is to encrypt as much as possible

• Many of these issues aren’t about communications security per se

– But about network protocol design... and politics

• We’re making progress anyway

64



Questions?

65



You might be interested in

• IETF main page: https://www.ietf.org/

• TLS WG: https://tlswg.org/

• QUIC WG: https://quicwg.org/

• DOH WG: https://datatracker.ietf.org/wg/doh/about/

66


