
Remote Access + Mobile
CS155 Computer and Network Security

XMLHttpRequest + CORS
Clarification

XMLHttpRequest

Incorrect: Website cannot make any XMLHttpRequests that
cross origins unless CORS pre-flight allows.

Reality: Browsers allow sites to make XMLHttpRequests in very
specific situations without a CROS pre-flight request.

XMLHttpRequest Modes
Simple Requests Preflighted requests

If all five conditions are met:

- Method one of {GET, HEAD, POST}

- Only “CORS-safelisted request-header”

headers are set

- Content-type is one of application/x-

www-form-urlencoded, multipart/form-
data, text/plain

- No event listeners are registered on any
XMLHttpRequestUpload object in req

- No ReadableStream object is used

SOP applies. These are the kinds of requests
that web content can already issue. No data
is released unless server sends CORS header

All other requests (e.g., DELETE or
application/json type.) Or, if the website
explicitly requests it.

A pre-flight OPTIONS request is sent to the
web server. If the server provides a CORS
header that provides permission, then, the
browser will allow the request through.

Access-Control-Allow-Origin: https://foo.bar.org
Access-Control-Allow-Methods: POST, GET, DELETE
Access-Control-Max-Age: 86400

Remote Access

Traditional Network Model
Organization has a perimeter firewall

in front of clients and servers

Some public facing servers are
behind that firewall in “DMZ” (de-
militarized zone)

Other servers and clients are behind
a second firewall

VPN allowed remote clients to gain
access behind second firewall

Virtual Private Networks (VPNs)
Problem: How do you provide secure communication for insecure
protocols across the public Internet?

VPNs create a fake shared network on which traffic is encrypted

Two Broad Types:

 - Remote client (e.g., traveler with laptop) to corporate network

 - Connect two remote networks across Internet

IPSec
Several VPN protocols exist (PPTP, L2TP, IPsec, OpenVPN)

Most popular is IPsec. OpenVPN is open source.

Cisco AnyConnect
Stanford and many other organizations use Cisco AnyConnect

Encapsulates traffic in TLS! Initial handshake uses normal TCP-
based TLS for initial handshake, HTTPS for client authentication,
and then DTLS (UDP-based TLS) to transport data

Safest to build on well-known and tested cryptographic
standards

WireGuard
New recently released VPN that many folks are excited about.
Much simpler than IPSEC and other protocols. Builds on
modern cryptography.

Passed formal analysis of protocol

Cloudflare recently released a  
Rust implementation

BeyondCorp
VPNs support the idea of having a secure internal network and
untrusted public Internet. Unfortunately, attacker has a ton of access
once the network perimeter is breached.

Unfortunately, internal networks aren’t that secure. Computers are
compromised all the time and attackers have free reign.

Google: assume internal network is also out to get you. Remove
privileged intranet and put all corporate applications on the Internet.

Access depends solely on device and user credentials, regardless of a
user’s network location

Mobile Security

Mobile is Big!
Around 2B actively monthly Android users. Users spend more
time on mobile than on desktops today.

Mobile Market Share
Android dominates global market.

Bring Your Own Device (BYOD)

Many companies are now allowing users to bring/use their own
personal devices

In the past, enterprise workstations were centrally managed.

How do you handle when users want to bring their own devices?

What’s Valuable on Phones?
Mobile Specific
 – Identify location

 – Record phone calls

 – Log SMS (What about 2FA SMS?)

 – Send premium SMS messages

Traditional (Similar to Desktop PCs)
- Steal personal data (e.g., contact list, email, messaging, banking/financial

information, private photos)

- Phishing

- Malvertising

- Join Bots

Unique Threat Model (Physical)
Powered-off devices under complete physical control of an adversary
(including nation states)

Screen locked devices under complete physical control of an adversary
(e.g. thieves)

Screen unlocked devices under control of an authorized but different
user (e.g. intimate partner abuse)

Devices in physical proximity to an adversary (with the assumed
capability to control all available radio communication channels,
including cellular, WiFi, Bluetooth, GPS, NFC, and FM)

Threat Model (Untrusted Code)
Android intentionally allows (with explicit consent by end users)
installation of application code from arbitrary sources:

Abusing APIs supported by the OS with malicious intent, e.g. spyware

Exploiting bugs in the OS, e.g. kernel, drivers, or system services

Mimicking system or other app user interfaces to confuse users

Reading content from system or other application user interfaces 
(e.g., screen-scrape)

Injecting input events into system or other app user interfaces

Unique Threat Model (Network)
The standard assumption of network communication under
complete control of an adversary certainly also holds for
Android. Assume fist hop (e.g., router) is also malicious.

Passive eavesdropping and traffic analysis, including tracking
devices within or across networks (e.g. based on MAC address
or other device network identifiers.)

Active manipulation of network traffic (e.g. MITM on TLS.)

Physical Security

Unlocking Device

Typically: Need PIN, pattern, or
alphanumeric password to unlock device

Some applications (e.g., banking apps) also
require entering a PIN to access the app

Swipe Code Problems
Smudge attacks [Aviv et al., 2010]

Entering pattern leaves smudge that can be
detected with proper lighting

Smudge survives incidental contact with clothing

Another problem: entropy
People choose simple patterns – few strokes

At most 1600 patterns with <5 strokes

Passcodes + Passwords More Secure

How do you allow only having a  
4-6 digit PIN and still be secure?

Traditional Password Hashing
How are passwords typically stored? In Linux (and most web
apps), you store hash of password and salt.

Offline Attack
 - Steal pwd file, try hashing all passwords + salt

 - Cannot reverse a hash, but can try dictionary

Online attack
 - Can you try all passwords at a web site?

iPhone Unlocking (1)
Every iPhone has an additional secure processor known as the
secure enclave. Memory is inaccessible to normal OS. Utilizes
a secure boot process that ensures its software is signed.

Each secure enclave has an AES key burned in at manufacture.
The hardware is designed such that the processor has
instructions that allow encrypting and decrypting content using
that key, but the key itself is never accessible (including via
JTAG)

iPhone Unlocking (2)

User passcode is intertwined with AES key fused into secure
enclave (known as UID). Imagine: key = EncryptUID(passcode).

This means that the the key to decrypt the device can only be
derived on the single secure enclave on a specific phone. Not
possible to take offline and brute force.

iPhone Unlocking (3)
What prevents someone from quickly secure enclave repeatedly
to try different passwords?

The passcode is entangled with the device’s UID many times —
requires approximately 80ms per password guess.

Imagine: EncryptUID(EncryptUID(EncryptUID(passcode)…))

iPhone Unlocking (4)

At 80ms per password check…

 

 - 5.5 years to try all 6 digits pins

 - 5 failed attempts ⇒ 1min delay, 9 failures ⇒ 1 hour delay 
 - >10 failed attempts ⇒ erase phone

FBI–Apple Encryption Dispute

After the San Bernardino shooting in 2016, FBI tried to compel
Apple to “unlock” iPhone. What were they specifically requesting?

Not possible to make password guessing any faster—innately
dependent on performance of burned-in AES key

FBI–Apple Encryption Dispute

Remember…

 - 5 failed attempts ⇒ 1min delay, 9 failures ⇒ 1 hour delay 
 - >10 failed attempts ⇒ erase phone

This is managed by code on the secure enclave, which can be
updated by Apple, not managed in hardware.

Technical Details
The court order wanted a custom version of a secure enclave firmware that would… 

1."it will bypass or disable the auto-erase function whether or not it has been
enabled" (this user-configurable feature of iOS 8 automatically deletes keys
needed to read encrypted data after ten consecutive incorrect attempts)

2."it will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing
electronically via the physical device port, Bluetooth, Wi-Fi, or other protocol"

3."it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE,
software running on the device will not purposefully introduce any additional delay
between passcode attempts beyond what is incurred by Apple hardware”

What happened?
Apple planned to fight the order, “The United States government has
demanded that Apple take an unprecedented step which threatens the
security of our customers. We oppose this order, which has implications
far beyond the legal case at hand. This moment calls for public
discussion, and we want our customers and people around the country to
understand what is at stake.”

One day before hearing, FBI dropped the request, saying a third party
had demonstrated a possible way to unlock the iPhone in question. No
precent set re all writs act.

Secure Boot Chain
Why couldn’t the FBI just upload their own firmware onto the secure enclave?

When an iOS device is turned on, it executes code from read-only memory
known as Boot ROM. This immutable code, known as the hardware root of
trust, is laid down during chip fabrication, and is implicitly trusted.

The Boot ROM code contains the Apple Root CA public key, which is used to
verify that the bootloader is signed by Apple. This is the first step in the chain
of trust where each step ensures that the next is signed by Apple.

Software Updates
To prevent devices from being downgraded to older versions that lack the
security updates, iOS uses System Software Authorization.

Device connects to Apple with cryptographic descriptors of each
component update (e.g., boot loader, kernel, and OS image), current
versions, a random nonce, and device specific Exclusive Chip ID (ECID).

Apple signs device-personalized message allowing update, which boot
loader verifies.

Rooting
Allows user to run applications with root privileges, e.g.,
modify/delete system files and app, CPU, network management

Done by exploiting vulnerability in firmware to install a custom OS
or firmware image

Double-edged sword… lots of malware only affects rooted
devices

FaceID/TouchID
Files are encrypted through a hierarchy of encryption keys
Application files written to Flash are encrypted:
 • Per-file key: encrypts all file contents (AES-XTS)
 • Class key: encrypts per-file key (ciphertext stored in metadata)
 • File-system key: encrypts file metadata (no passcode)

FaceID/TouchID
Files are encrypted through a hierarchy of encryption keys

By default (no FaceID, TouchID), class encryption keys are erased from
memory of secure enclave whenever the device is locked or powered off

When TouchID/FaceID is enabled, the class keys are kept around and
the hardware sensor sends fingerprint image to secure enclave. All ML/
analysis is performed within the secure enclave.

How Secure is TouchID?
Easy to build a fake finger if you have
someone’s fingerprint

 - Several demos on YouTube. ~20 min  
 - Similar work on FaceID

The problem: fingerprints are not
secret. Cannot replace.

Convenient, but more secure solutions
exist, e.g., unlock phone via bluetooth
using a wearable device

More Information
iOS Security

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

Mobile Device Management
Manage mobile devices across organization

Consists of central server and client-side software. Now part of many mobile
OSes too.

Allows:
 - Diagnostics, repair, and update
 - Backup and restore
 - Policy enforcement (e.g. only allowed apps)
 - Remote lock and wipe
 - GPS Tracking

Sample MDM Enrollment

Mobile Malware

What’s Different?
Applications are isolated

- Each runs in a separate execution context

- No default access to file system, devices, etc.

- Different than traditional OSes where multiple applications run

with the same user permissions!

Applications are installed via App Store (and malware spreads)

- Market: Vendor controlled (Apple) / open (Android)

- User approval of permissions

Android Isolation
Based on Linux with Application sandboxes (using SE Linux)

- Applications run as separate UIDs, in separate processes.

- Memory corruption errors only lead to arbitrary code

execution in the context of the particular application, not
complete system compromise!

- Can still escape sandbox – but must compromise Linux kernel
to do so

Examples of Malware
DroidDream (Android)
 - Over 58 apps uploaded to Google app market

 - Conducts data theft; send credentials to attackers

Zitmo (Symbian, BlackBerry, Windows, Android)
 - Poses as mobile banking application

 - Captures info from SMS – steal banking 2FA codes

 - Works with Zeus botnet

Ikee (iOS)
 - Worm capabilities (targeted default ssh password)

 - Worked only on jailbroken phones with ssh installed

Attacked vulnerability 
 in Android itself

Malicious application  
that tricked users

Attacked vulnerability 
 in rooted iPhones

Large Target for Attackers

Legitimate Apps Too…

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but….

1) Permissions: How can applications access sensitive
resources?

2) Communication: How can applications communicate  
with each other?

(1) Permission Granting Problem
Smartphones (and other modern OSes) try to prevent such
attacks by limiting applications’ default access to:

 – System Resources (clipboard, file system)

 – Devices (e.g., camera, GPS, phone, …)

How should operating system grant permissions to applications?

Standard approach: Ask the user.

State of the Art

State of the Art

Disruptive. Leads to user fatigue

State of the Art

Disruptive. Leads to user fatigue

No context. Users do not
understand.

State of the Art

Disruptive. Leads to user fatigue No context. Users do not
understand.

In practice, both are overly permissive:  
Once granted permissions, apps can misuse them.

Are Manifests Usable? (Felt et al)

Developers Don’t know the Permissions They Need

Android Now Asks at Runtime  
(was not the case historically)

Manifests
In both cases, the Android app needs to request permission in its
manifest—it’s just up to the Operating System when it asks the
user.

The OS might also just grant the right it doesn’t seem dangerous

Manifest also defines what endpoints other endpoints can
access. Whole class of malware that takes advantage of this of
misconfiguration.

Inter-Process Communication
Primary mechanism for IPC between application components in Android:
Intents

Explicit: specify name: e.g., com.example.testApp.MainActivity

Implicit: Specify action (e.g., ACTION_VIEW) and/or data (URI & MIME type)

An implicit intent specifies an action that can invoke any app on the device
able to perform the action. Using an implicit intent is useful when your app
cannot perform the action, but other apps probably can and you'd like the
user to pick which app to use.

Intent Eavesdropping

Unauthorized Intent Receipt

Intent Spoofing

Intent + Malware

Malware often times takes advantage of improperly filtered
intents to gain access to the permissions in other applications

