
Internet Protocol Security
CS155 Computer and Network Security

What is the Internet?
Global network that lets hosts communicate

Internet provides best-effort delivery of packets between hosts

Packet: a structured sequence of bytes

 Header: metadata used by network

 Payload: user data to be transported

Packets are forwarded by routers from sender to destination host

Internet Protocol (IP)
Internet Protocol (IP) defines what packets that cross the Internet need to
look like to be processed by routers

Every host is assigned a unique identifier (“IP Address”)

Every packet has an IP header that indicates its sender and receiver

Routers forward packet along to try to get it to the destination host

Rest of the packet should be ignored by the router

IP Addresses
IPv4: 32-bit host addresses

Written as 4 bytes in form A.B.C.D 
where A,...,D are 8 bit integers in decimal 
(called dotted quad) e.g. 192.168.1.1

IPv6: 128 bit host addresses

Written as 16 bytes in form AA:BB::XX:YY:ZZ 
where AA,...,ZZ are 16 bit integers in hexadecimal 
and :: implies zero bytes 
e.g. 2620:0:e00:b::53 = 2620:0:e00:b:0:0:0:53

IPv4 Header
Instruct routers and hosts what to do with a packet

All values are filled in by the sending host

Destination Address
Sender sets destination address

Routers try to forward packet to that address

Source Address
Source Address (sender)

Sender fills in. Routers due not verify.

Checksum
16-bit Simple Header checksum (filled in by sender)

IP Security

Client is trusted to embed correct source IP

• Easy to override using lower level network sockets

• Libnet: a library for formatting raw packets with arbitrary IP headers

Anyone who owns their machine can send packets with arbitrary source IP

• Denial of Service Attacks

• Anonymous infection (if one packet)

Internet Protocol (IP)
Yes:
Routing. If host knows IP of destination host, route packet to it.

Fragmentation and reassembly: Split data into packets and reassemble

Error Reporting: (maybe, if you’re lucky) tell source it dropped your packet

No:
Everything else. No ordering. No retransmission. No (real) error checking. No

acknowledgement of receipt. No “connections”. No security. Just packets.

Protocol Layering

TCP

IP

EthernetCellular

SSHDNS

UDP

HTTPNNTPSMTPFTP Application	
layer

Network	layer

Link	layer

Transport	layer

Physical	layerRadio Copper Fiber

WiFi

How do I get to final destination?

How do I get to next hop?

How do I get to the right service? 
 How do I have a reliable “stream” of data?

How does Application  
structure data?

Protocol Layering
Networks use a stack of layers
Lower layers provide services to layers above

Don’t care what higher layers do

Higher layers use services of layers below

Don’t care how lower layers implement services

Layers define abstraction boundaries

At a given layer, all layers above and below are opaque

Protocol Layering

TCP

IP

EthernetCellular

SSHDNS

UDP

HTTPNNTPSMTPFTP Application	
layer

Network	layer

Link	layer

Transport	layer

Physical	layerRadio Copper Fiber

WiFi

How do I get to final destination?

How do I get to next hop?

How do I get to the right service? 
 How do I have a reliable “stream” of data?

How does Application  
structure data?

Packet Encapsulation
Protocol N1 can use the services of lower layer protocol N2

A packet P1 of N1 is encapsulated into a packet P2 of N2

The payload of p2 is p1

The control information of p2 is derived from that of p1

Header

Payload

Header Payload

P1
P2	

Link Layer
Model assumed that hosts can deliver and accept packets from Internet

routers

In practice, hosts not connected directly to router

Link layer provides connectivity between hosts and routers

Ethernet

At layer 2 (link layer) packets are called frames

MAC addresses: 6 bytes, universally unique

EtherType gives layer 3 protocol in payload

0x0800: IPv4

0x0806: ARP

0x86DD: IPv6

Most common Link Layer Protocol. Let’s you send packets to other local hosts.

Ethernet
Originally broadcast. Every local computer got every packet.

Switched Ethernet
With switched Ethernet, the switch learns at which physical port each MAC

address lives based on MAC source addresses

If switch knows MAC address M is at port P, 
it will only send a packet for M out port P

If switch does not know which port MAC address M lives at, will broadcast
to all ports

Ethernet

Two Problems

Local: How does a host know what MAC address their
destination has?

Internet: How does each router know where to send each
packet next?

ARP: Address Resolution Protocol
ARP is a Network protocol that lets hosts map IP addresses
to MAC addresses

Host who needs MAC address M corresponding to IP
address N broadcasts an ARP packet to LAN asking, “who
has IP address N?”

Host that has IP address N will reply, “IP N is at MAC
address M.”

ARP Packet

ARP Security
Any host on the LAN can send ARP requests and replies: any host can claim

to be another host on the local network!

This is called ARP spoofing

This allows any host X to force IP traffic between any two other hosts A and B
to flow through X (MitM!)
Claim NA is at attacker’s MAC address MX

Claim NB is at attacker’s MAC address MX

Re-send traffic addressed to NA to MA, and vice versa

Routing (BGP)
BGP (Border Gateway Protocol): protocol that allows routers
to exchange information about their routing tables

Each router announces what it can route to all of its
neighbors.

Every router maintains a global table of routes

Pakistan hijacks YouTube
On 24 February 2008, Pakistan Telecom (AS 17557) began
advertising a small part of YouTube’s (AS 36561) assigned
network

PCCW (3491) did not validate Pakistan Telecom’s (17557)
advertisement for 208.65.153.0/24

Youtube offline.

Protocol Layering

TCP

IP

EthernetCellular

SSHDNS

UDP

HTTPNNTPSMTPFTP Application	
layer

Network	layer

Link	layer

Transport	layer

Physical	layerRadio Copper Fiber

WiFi

How do I get to final destination?

How do I get to next hop?

How do I get to the right service? 
 How do I have a reliable “stream” of data?

How does Application  
structure data?

From Packets to Streams
Most Internet applications want a data stream abstraction (not
best-effort packets)

Application on host X wants to send a sequence of bytes to
application on host Y. Wants reliable, in-order delivery of data

Transmission Control Protocol (TCP) provides a data stream
abstraction using a best-effort packet transport (IP)

Transmission Control Protocol
Have: network that will deliver packets

Packets may be dropped, re-ordered, duplicated

Want:

 Abstraction of a stream of bytes between applications on different hosts

Bytes delivered reliably and in-order

!

"

!

"

Ports
Each application is identified by a port number

TCP connection established between port A on host X to port B on host Y

Ports are 1–65535 (16 bits)

Some destination port numbers used for specific applications by convention

!

"

!

"

Ports
Port Application

80 HTTP (Web)
443 HTTPS (Web)
25 SMTP (mail)
67 DHCP (host config)
22 SSH (secure shell)

514 RSH (remote shell)
23 Telnet

Transmission Control Protocol
Bytes in application data stream numbered with a 32-bit
sequence number

Data sent in segments: sequences of contiguous bytes sent
in a single IP datagram

There are two logical data streams in a TCP session, one in
each direction

Transmission Control Protocol
Sequence number in packet header is seq. number of first byte of payload

Acknowledgement number is seq number of next expected byte of stream
in opposite direction

Transmission Control Protocol

TCP ACKs

Transmission Control Protocol

Transmission Control Protocol

Transmission Control Protocol

Transmission Control Protocol

Transmission Control Protocol

Transmission Control Protocol

Starting a Connection

Ending a Connection
Sends packet with FIN flag set

Must have ACK flag with valid seqnum

Peer receiving FIN packet acknowledges
receipt of FIN packet with ACK

FIN “consumes” one byte of seq.
number

Eventually other side sends packet with
FIN flag set:

 This terminates the TCP session

TCP Connection Reset
TCP designed to handle possibility of spurious TCP packets (e.g. from
previous connections)

Packets that are invalid given current state of session generate a reset
If a connection exists, it is torn down
Packet with RST flag sent in response

If a host receives a TCP packet with RST flag, it tears down the connection

TCP Connection Spoofing

Can we impersonate another host when initiating a
connection?

Off-path attacker can send initial SYN to server … 
… but cannot complete three-way handshake
without seeing the server’s sequence number

1 in 232 chance to guess right if initial sequence
number chosen uniformly at random

TCP Reset Attack
Can we reset an existing TCP connection?

Need to know port numbers (16 bits)
Initiator’s port number usually chosen random by OS
Responder’s port number may be well-known port of service

There is leeway in sequence numbers B will accept
Must be within window size (32-64K on most modern OSes)

1 in 216+32/W (where W is window size) chance to guess right

UDP (User Datagram Protocol)
Sometimes we do only want best-effort delivery

User Datagram Protocol (UDP) is a transport layer protocol that is essentially a

wrapper around IP

Adds ports to demultiplex traffic by applications

DNS
Application-layer protocols (and people) usually refer to Internet
host by host name (e.g., google.com)

DNS is a delegatable, hierarchical name space

http://google.com

DNS Record
A DNS server has a set of records it authoritatively knows about

$ dig bob.ucsd.edu

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30439
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6

;; QUESTION SECTION:
;bob.ucsd.edu. IN A

;; ANSWER SECTION:
bob.ucsd.edu. 3600 IN A 132.239.80.176

;; AUTHORITY SECTION:
ucsd.edu. 3600 IN NS ns0.ucsd.edu.
ucsd.edu. 3600 IN NS ns1.ucsd.edu.
ucsd.edu. 3600 IN NS ns2.ucsd.edu.

DNS Root Name Servers
In total, there are 13 main DNS root servers, each of which is
named with the letters 'A' to 'M'.

Caching
DNS responses are cached

Quick response for repeated translations

NS records for domains also cached

DNS negative queries are cached

Save time for nonexistent sites, e.g. misspelling

Cached data periodically times out

Lifetime (TTL) of data controlled by owner of data

TTL passed with every record

DNS Packet
DNS requests sent over UDP

Four sections: questions,
answers, authority, additional
records

Query ID:
16 bit random value

Links response to query

Request

Response

Authoritative Response

DNS Security
Users/hosts trust the host-address mapping provided by DNS

 Used as basis for many security policies:

 Browser same origin policy, URL address bar

Interception of requests or compromise of DNS servers can result
in incorrect or malicious responses

DNSSEC Fixes, but nobody uses. Use TLS!!

DNS Spoofing

Scenario: DNS client issues query to server

Attacker would like to inject a fake reply
Attacker does not see query or real response

How does client authenticate response?

DNS Spoofing
How does client authenticate response?

UDP port numbers must match
Destination port usually port 53 by convention

16-bit query ID must match

DNS Cache Poisoning
Recursive resolvers cache records to avoid repeating recursive
resolution process for each query

Lifetime of record determined by record TTL

Could also be evicted from cache due to limited memory

Injecting spoofed records into a resolver’s cache is called DNS
cache poisoning
No protocol-defined way for to refresh cached record

Kaminsky Attack

Try Again!

Defenses

Increase QueryID. But how? Don’t want to change packet.

Randomize src port, additional 11 bits

 - Now attack takes several hours

Conclusion

The network is out to get you.

