
Dan Boneh

Web security

Session Management and 
User Authentication on 
the Web



Dan Boneh

… but first, finishing up HTTPS



Dan Boneh

Problems with HTTPS and the Lock Icon

1. Upgrade from HTTP to HTTPS

2. Forged certs

3. Mixed content:    HTTP and HTTPS on the same page

4. Does HTTPS hide web traffic?  

– Problems:    traffic analysis,   compression attacks



Dan Boneh

2.  Certificates: wrong issuance
2011:   Comodo and DigiNotar CAs hacked, issue certs for  Gmail,  Yahoo! Mail, …

2013:   TurkTrust issued cert. for gmail.com (discovered by pinning)

2014:   Indian NIC (intermediate CA trusted by the root CA IndiaCCA) issue certs
for Google and Yahoo! domains

Result:   (1) India CCA revoked NIC’s intermediate certificate

(2) Chrome restricts India CCA root to only seven Indian domains

2016:   WoSign (Chinese CA) issues cert for GitHub domain (among other issues)

Result:  WoSign certs no longer trusted by Chrome and Firefox

⇒ enables eavesdropping w/o a warning on user’s session



Dan Boneh

Man in the middle attack using rogue cert

Attacker proxies data between user and bank.   
Sees all traffic and can modify data at will.

bankattackerClientHello ClientHello
BankCertBadguyCert

ServerCert (Bank)ServerCert (rogue)

GET https://bank.com

SSL key exchange SSL key exchange
k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2

(cert for Bank by a valid CA)



Dan Boneh

What to do?      (many good ideas)

1. Public-key pinning  (static pins)
– Hardcode list of allowed CAs for certain sites (Gmail, facebook, …)

– Browser rejects certs issued by a CA not on list

– Now deprecated  (because often incorrectly used in practice)

1. Certificate Transparency (CT):   [LL’12]

– idea:  CA’s must advertise all certs. they issued on a public log
– Browser will only use a cert if it is published on (two) log servers

• Server attaches a signed statement from log (SCT) to certificate
• Companies can scan logs to look for invalid issuance



Dan Boneh

CT requirements 
April 30, 2018:    CT required by chrome 
• Required for all certificates with a path to a trusted root CA

(not required for an installed root CA)
• Otherwise:   HTTPS errors

Cert for crypto.stanford.edu
published on five logs:

cloudflare_nimbus2018
google_argon2018,   google_aviator
google_pilot,   google_rocketeer



Dan Boneh

4.  Peeking through SSL:  traffic analysis

• Network traffic reveals length of HTTPS packets
– TLS supports up to 256 bytes of padding

• AJAX-rich pages have lots and lots of interactions with the server

• These interactions expose specific internal state of the page

BAM! Chen, Wang, Wang, Zhang, 2010



Dan Boneh

Peeking through SSL: an example  [CWWZ’10]

Vulnerabilities in an online tax application

No easy fix.    Can also be used to ID Tor traffic



Dan Boneh

Even worse:  the CRIME and BREACH attacks

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

Javascript can issue requests to Bank,
but cannot read Cookie value

(simplified)



Dan Boneh

POST /bank.com/buy?id=uid=a
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size

Even worse:  the CRIME and BREACH attacks



Dan Boneh

POST /bank.com/buy?id=uid=b
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size

Even worse:  the CRIME and BREACH attacks



Dan Boneh

POST /bank.com/buy?id=uid=j
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

ciphertext slightly shorter
⇒ first character of Cookie is “j”

Even worse:  the CRIME and BREACH attacks



Dan Boneh

POST /bank.com/buy?id=uid=ja
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size

Even worse:  the CRIME and BREACH attacks



Dan Boneh

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

ciphertext slightly shorter
⇒ 2nd character of Cookie is “h”

Even worse:  the CRIME and BREACH attacks



Dan Boneh

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

Recover entire cookie after
256 × |Cookie|    tries

Takes several minutes (simplified) 

Even worse:  the CRIME and BREACH attacks



Dan Boneh

What to do?
• Disable compression

• Use a different LZW dictionary for parts under Javascript
control and parts that are not

• Change secret (Cookie) after every request

Does not solve info leakage due to compression



Dan Boneh

Interlude: Designing 
Security Prompts



Dan Boneh

Users are faced with a lot of challenging trust-
related decisions



Dan Boneh

An example problem:   IE6 mixed context

Vague threat.  
What’s the 
risk?  What 
could happen?

How should the user make 
this decision?  No clear 
steps for user to follow.

“Yes”, the possibly less 
safe option, is the default



Dan Boneh

Better

Even better:   load the safe content, and use the 
address bar to enable the rest

(IE8)

(IE9)



Dan Boneh

Guidelines
• Philosophy: 

– Does the user have unique knowledge the system doesn’t?
– Don’t involve user if you don’t have to
– If you involve the user, enable them to make the right decision

• Make sure your security dialogs are NEAT:  

– Necessary:   Can the system take action without the user?
If the user has no unique knowledge, redesign system.

– Explained:     see next slides

– Actionable:  Can users make good decisions with your UI in both 
malicious and benign situations? 

– Tested:    Test your dialog on a few people who haven’t used the
system before -- both malicious and benign situations.



Dan Boneh

Example 1:  bad explanation

Most users will not understand “revocation information” .

Choices are unclear,   consequence is unclear.

IE6  CRL check failure notification



Dan Boneh

Better explanation

Source

Risk

Choices

Process



Dan Boneh

In Chrome (2019)

Risk

Choices

Explanation



Dan Boneh

In Chrome (2019)

Choice

Process

(expired certificate)



Dan Boneh

Example 2:  bad explanation

Attacker can abuse explanation causing bad user decisions.

Used by Conficker spread through USB drives.

AutoPlay dialog in Vista



Dan Boneh

A better design

Windows 7 AutoPlay removed the auto-run option 



Dan Boneh

… back to Web security

Session Management and 
User Authentication on 
the Web



Dan Boneh

Sessions
A sequence of requests and responses from one browser 
to one (or more) sites

– Session can be long  (e.g. Gmail) or short
– without session mgmt:

users would have to constantly re-authenticate

Session mgmt:    authorize user once;
– All subsequent requests are tied to user



Dan Boneh

Pre-history:   HTTP auth
HTTP request: GET   /index.html
HTTP response contains:

WWW-Authenticate:  Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
Authorization:  Basic ZGFddfibzsdfgkjheczI1NXRleHQ=



Dan Boneh

HTTP auth problems
Hardly used in commercial sites:

• User cannot log out other than by closing browser
– What if user has multiple accounts?  

multiple users on same machine?

• Site cannot customize password dialog

• Confusing dialog to users 

• Easily spoofed Do not use …



Dan Boneh

Session tokens
Browser

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username, password, and 2nd factor

elevate to a logged-in session token

POST /checkout
logged-in session token

check 
credentials

(crypto course)

Validate
token

web site



Dan Boneh

Storing session tokens:  
Lots of options   (but none are perfect)

Browser cookie:
Set-Cookie:    SessionToken=fduhye63sfdb

Embed in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

In a hidden form field:
<input type=“hidden” name=“SessionToken” value=“uydh735”>



Dan Boneh

Storing session tokens:   problems
Browser cookie:   browser sends cookie with every request,

even when it should not   (CSRF)       [note: SameSite attribute]

Embed in all URL links:     token leaks via HTTP  Referer header

In a hidden form field:     does not work for long-lived sessions

Best answer:   a combination of all of the above
Supported in most frameworks

PHP ex:   output_add_rewrite_var(name, value)

(or if user posts URL in a public blog)



Dan Boneh

The HTTP referer header

Referer leaks URL session token to 3rd parties

Referer supression:
• not sent when HTTPS site refers to an HTTP site
• in HTML5:     <a  rel=”noreferrer” href=www.example.com>



Dan Boneh

The Logout Process
Web sites must provide a logout function:
• Functionality:  let user to login as different user
• Security:   prevent others from abusing account

What happens during logout:
1.  Delete SessionToken from client
2.  Mark session token as expired on server

Problem:   many web sites do (1) but not (2)   !!
⇒ Especially risky for sites who use HTTP after login



Dan Boneh

The Logout Process (cont.)
What if a user suspects their machine is compromised?

– Logging in from an untrusted machine  (Internet Café), or
– Malware infection of user’s machine

Site must show all devices currently logged into user’s account

– Let user terminate any unrecognized device

⇒ mark terminated session token as expired on server



Dan Boneh

Session hijacking



Dan Boneh

Session hijacking
Attacker waits for user to login

then attacker steals user’s Session Token 
and “hijacks” session

⇒ attacker can issue arbitrary requests on behalf of user

Example:   FireSheep

Firefox extension: hijacks HTTP session tokens over WiFi

Solution:  always send session tokens over HTTPS!



Dan Boneh

Beware:    Predictable tokens
Example 1: counter   

⇒ user logs in, gets counter value, 
can view sessions of other users

Example 2:    weak MAC.       token = { userid,  MACk(userid) }
• Weak MAC exposes  k  from few cookies.

Apache Tomcat:   generateSessionId()
• Returns random session ID     [server retrieves client state based on sess-id]



Dan Boneh

Session tokens must be unpredictable to attacker

To generate:  use underlying framework  (e.g. ASP, Tomcat, Rails)

Rails:     token = SHA256( current time, random nonce )



Dan Boneh

Beware:  Session token theft
Example 1:    use of HTTP after login over HTTPS
• Enables cookie theft at WiFi access point       (e.g. Firesheep)
• Other ways network attacker can steal token:

– Site has mixed HTTPS/HTTP pages  ⇒ token sent over HTTP
– Man-in-the-middle attacks on SSL 

Example 2:    Cross Site Scripting (XSS) exploits

Amplified by poor logout procedures:
– Logout must invalidate token on server



Dan Boneh

Mitigating SessionToken theft by binding 
SessionToken to client’s computer

Client IP addr:    makes it harder to use token at another machine
– But honest client may change IP addr during session

• client will be logged out for no reason

Client user agent: weak defense against theft, but doesn’t hurt.

TLS session id:  same problem as IP address   (and even worse)

A common idea:  embed machine specific data in SID



Dan Boneh

Session fixation attacks
Suppose attacker can set the user’s session token:
• For URL tokens, trick user into clicking on URL
• For cookie tokens, set using XSS exploits

Attack:     (say, using URL tokens)

1. Attacker gets anonymous session token for site.com

2. Sends URL to user with attacker’s session token

3. User clicks on URL and logs into  site.com
– this elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack user’s session.



Dan Boneh

Session fixation:  lesson

When elevating user from anonymous to logged-in:

always issue a new session token

(e.g. in PHP by calling  session_regenerate_id() in PHP)

After login,  token changes to value unknown to attacker    

⇒ Attacker’s token is not elevated.



Dan Boneh

Summary
• Session tokens are split across multiple client state mechanisms:

– Cookies,  hidden form fields,   URL parameters
– Cookies by themselves are insecure  (CSRF, cookie overwrite)

– Session tokens must be unpredictable and resist theft by 
network attacker

• Ensure logout and timeout invalidates session on server


