
Security Principles and Mechanisms
CS155 Computer and Network Security

Least Privilege
Every program and user should operate using the least
privileges necessary to complete their job.

“This principle limits the damage that can result from an accident or error. It also
reduces the number of potential interactions among privileged programs to the
minimum for correct operation, so that unintentional, unwanted, or improper uses
of privilege are less likely to occur. Thus, if a question arises related to misuse of a
privilege, the number of programs that must be audited is minimized. Put another
way, if a mechanism can provide "firewalls," the principle of least privilege provides
a rationale for where to install the firewalls. The military security rule of "need-to-
know" is an example of this principle.”

Security Models & Access Control

System Security

How do we protect confidentiality, integrity, and availability of system
components from attackers?

Security Model: System abstraction that enables us to discuss and
formulate a policy.

Security Policy: Set of allowed actions. Who is allowed to do what?

Security Mechanism: Implementation of the policy, e.g., access control or
encryption

Security Model
Subjects (Who): acting system principals

UNIX: Users and Processes

Android: Apps

Web: Domain

Objects (What): protected sources

UNIX: memory, files, hardware devices, syscalls

Other: database tables/rows, cookies, DOM components, phone camera

Access Operations: How can subjects operate on (e.g., read) objects

Security Policy

What actions is a subject allowed to perform on an object? 

Examples:

Alice and Bob can read the files in directory X but not create new files in the
directory

John can create new users

Access Control Matrix [Lampson]

File 1 File 2 File 3 File 4

Alice

Bob

Carol

Wendy

Objects
Su

bj
ec

ts { allowed actions }

Access Control Matrix [Lampson]

File 1 File 2 File 3 File 4

Alice read read/write no access no access

Bob read read/write no access no access

Carol read write read/write read/write

Wendy read/write read/write read read

Security Mechanisms

There are two security mechanisms for enforcing security policies:

Access Control Lists (ACLs): Every object has a list of who can access

Capabilities: User has an unforgeable ticket that grants access

Access Control Lists (ACLs)

Object-centric approach.

Every object has an ACL that identifies what
operations subjects can perform.

Each access to object is checked against
object’s ACL.

Example: guest list

File 1

Alice read

Bob read

Carol write

Wendy read/write

Capabilities

User-centric approach.

A capability grants a subject permission to perform a
certain action.

Subject provides capability to reference monitor to
check before allowing operation.

Example: movie ticket.

ACL vs Capability

What are the pros and cons?

Delegation?

Revocation?

Audibility?

Role Based Access Control
Access control matrices can grow complex as number of subjects, objects,
and possible operations grow.

Observation: Users change more often than roles

hr/ eng/ admin/ all/

marketing — — — read

executive read read read/write read/write

hr read/write — — read

engineering — read/write — read

Attribute-Based Access Control

RBAC is one type of Attribute-Based Access Control

Idea: assign attributes (e.g., tags) to subjects and/or objects.

Access control matrix defines which attributes subjects need to have in
order to access objects with given attributes

UNIX Security Model

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations

 - Read, Write, Execute

Unix Groups
A user may belong to several groups

- Used to provide simple role-based access control

Every user belongs to

- primary group (defined in /etc/passwd)

- optional additional groups (defined in /etc/group)

zakir@scratch-01:~$ groups
zakir sudo lxd esrg esrg_

Unix File System Security

Every file and directory has an owner and group and simple ACL

File permissions specify what role can do what

 - Three Roles: owner, group, other

 - Three Operations: read, write, execute

Permissions are set by owner (or root)

 - Cannot be delegated

rwx r-x r--

Owner Group Other

Sticky Bit
Can a user rename a file in a directory if they have access
to the directory but not the file?

Sticky Bit
Off: if user has write permission on directory, can rename
or remove files, even if not owner 

On: only file owner, directory owner, and root can rename
or remove file in the directory

Sticky Bit
Can a user rename a file in a directory if they have access
to the directory but not the file?

Sticky Bit
Off: if user has write permission on directory, can rename
or remove files, even if not owner 

On: only file owner, directory owner, and root can rename
or remove file in the directory

Example Directory Listing

zakir@scratch-01:~$ ls -l
total 8
d rwx rwx --- 5 zakir zakir 4096 Apr 2 15:56 go
- rw- rw- r-- 1 zakir zakir 0 Apr 11 04:15 test.py
d rwx rwx --- 11 zakir esrg 4096 Dec 28 21:09 zmap

Owner Group Other
Access Operations

Owner Group Size Modified

Unix Processes
Every process has three user IDs

Real User ID (RUID)
 - Same as the user ID of parent (unless changed)

 - Used to determine which user started the process 
Effective User ID (EUID)
 - Determines the permissions for process

 - (Usually) Inherited from parent process

 - Root user can change process id 
Saved user ID (SUID)
 - Prior EUID that can be restored

Superuser / Root

Superuser allowed to do anything that is possible

Called root and mapped to user id 0

Think about superuser as a role rather than a particular user

System administrators assume superuser role to perform privileged actions

– Good practice to assume superuser role only when necessary

login and sshd

Login and SSHD run as root

 - Authenticate the user using username/password, public key

 - Changes its user id and group id to that of user

 - Executes users’ shell

Critical: dropping privileges from root to regular user

Elevating Privilege

Typically, executables are run with user ID and group ID of the user that
executed them

Executable files have a setuid bit

 - If set, file is executed with the effective id (and associated privileges) of
the file owner (i.e., EUID is file owner, RUID is executer)

The passwd command is owned by root and has setuid bit set.

Linux Capabilities
Traditional UNIX distinguished between privileged processes (EUID == 0)
and unprivileged processes (EUID != 0)

Privileged processes bypass all kernel permission checks, while unprivileged
processes are subject to full permission checking

Capabilities divide the power of superuser into pieces, such that if a
program that has one or more capabilities is compromised, its power to do
damage to the system would be less than the same program running with
root privilege.

Capability Examples

CAP_KILL
Bypass permission checks for sending signals

CAP_NET_BIND_SERVICE
Bind a socket to privileged ports (port < 1024).

CAP_SYS_MODULE
Load and unload kernel modules

CAP_SYS_PTRACE
Trace arbitrary processes using ptrace(2)

DAC vs MAC
Discretionary Access Control (DAC)

 - Linux is an example of DAC.

 - Resource owners can set the security policy for objects they own

Mandatory Access Control (MAC)

 - Centralized authority sets security policy for all resources

 - Example: SELinux

Windows Security Model

Windows has more complex
access control

Objects have full ACLs —
possibility for fine grained
permissions

Users can be member of multiple
groups, groups can be nested

ACLs support Allow and Deny
rules

Subjects and Access Tokens
Every process has an access token that describe its security context

 - ID of user account

 - ID of groups

 - ID of login session

 - List of OS privileges held by either the user or the user's group

 - List of restrictions

Windows Objects
Every object has a security descriptor

 - Specifies who can perform what and audit rules

Contains

 - Security identifiers (SIDs) for the owner and primary group of an object.

 - Discretionary ACL (DACL): access rights allowed users or groups.

 - System ACL (SACL): types of attempts that generate audit records

Privilege Separation
Where feasible, a protection mechanism that requires
two keys to unlock it is more robust and flexible than one
that allows access to the presenter of only a single key.
“[…] Once the mechanism is locked, the two keys can be physically separated and
distinct programs, organizations, or individuals made responsible for them. From
then on, no single accident, deception, or breach of trust is sufficient to compromise
the protected information. […] This principle is at work in the defense system that
fires a nuclear weapon only if two different people both give the correct command. In
a computer system, separated keys apply to any situation in which two or more
conditions must be met before access should be permitted. For example, systems
providing user-extendible protected data types usually depend on separation of
privilege for their implementation.”

Chrome Security
Architecture

Browsers Pre-2006 vs Now

Old New

Chrome Processes
Browser Process 
Controls "chrome" part of the application  
like address bar and, bookmarks. Also  
handles the invisible, privileged parts of a  
web browser like network requests.

Renderer Process 
Controls anything inside of the tab where  
a website is displayed.

Plugin Process 
Controls any plugins used by the website, for example, flash.

GPU Process 
Handles GPU tasks in isolation from other processes. It is separated into
different process because GPUs handles requests from multiple apps and draw
them in the same surface

Site Isolation

Chrome Architecture

Broker (Main Browser) 
Privileged controller/supervisor of the
activities of the sandboxed processes

Renderer's only access to the network is via
its parent browser process and file system
access can be restricted

Chrome Sandbox

Chrome’s sandbox depends on four Windows mechanisms:

1. a restricted token

2. Windows job object

3. Windows desktop object

4. Windows integrity levels

Restricted Token

Chrome calls CreateRestrictedToken to create a token that has a subset of
the user’s privileges.

Assigns the token the user and group S-1-0-0 Nobody. Removes access to
nearly every system resource.

As long as the disk root directories have non-null security, no files (even with
null ACLs) can be accessed

No network access (on Vista and later)

Windows Job Object

Renderer runs as a “Job” object rather than an interactive process.

Eliminates access to:

 - desktop and display settings

 - clipboard

 - creating subprocesses

 - access to global atoms table

Alternate Windows Desktop

Windows on the same desktop are effectively in the same security context
because the sending and receiving of window messages is not subject to
any security checks.

Sending messages across desktops is not allowed.

Chrome creates an additional desktop for target processes

Isolates the sandboxed processes from snooping in the user's interactions

Windows Integrity Levels

Windows Vista introduced concept of integrity levels

Five Levels: untrusted, low, medium, high, system

Most processes run at medium level

Low-integrity level has limited scope, e.g., can read but cannot write most
files

Example of defense in depth.

Android Process Isolation

Android uses Linux and its own kernel application sandbox for isolation

Each application runs with its own UID in its own VM

 - Apps cannot interact with one another

 - Limit access to system resources (decided at installation time)

Reference monitor checks permissions on intercomponent communication

Design Principles of 
Secure Systems

Least Privilege
Every program and user should operate using the least
privileges necessary to complete their job.

“Primarily, this principle limits the damage that can result from an accident or error.
It also reduces the number of potential interactions among privileged programs to
the minimum for correct operation, so that unintentional, unwanted, or improper
uses of privilege are less likely to occur. Thus, if a question arises related to misuse
of a privilege, the number of programs that must be audited is minimized. Put
another way, if a mechanism can provide "firewalls," the principle of least privilege
provides a rationale for where to install the firewalls. The military security rule of
"need-to-know" is an example of this principle.”

Privilege Separation
Where feasible, a protection mechanism that requires
two keys to unlock it is more robust and flexible than one
that allows access to the presenter of only a single key.
“[…] Once the mechanism is locked, the two keys can be physically separated and
distinct programs, organizations, or individuals made responsible for them. From
then on, no single accident, deception, or breach of trust is sufficient to compromise
the protected information. […] This principle is at work in the defense system that
fires a nuclear weapon only if two different people both give the correct command. In
a computer system, separated keys apply to any situation in which two or more
conditions must be met before access should be permitted. For example, systems
providing user-extendible protected data types usually depend on separation of
privilege for their implementation.”

Economy of Mechanism

Keep the design as simple and small as possible.

“This well-known principle applies to any aspect of a system, but it deserves
emphasis for protection mechanisms for this reason: design and implementation
errors that result in unwanted access paths will not be noticed during normal use
(since normal use usually does not include attempts to access improper paths).

As a result, techniques such as line-by-line inspection of software and physical
examination of hardware that implements protection mechanisms are necessary.
For such techniques to be successful, a small and simple design is essential.”

Fail-Safe Defaults (Fail Closed)

Base access decisions on permission rather than
exclusion. e.g., Whitelists are better than blacklists.

“The default situation is lack of access, and the protection scheme identifies
conditions under which access is permitted. The alternative, in which
mechanisms attempt to identify conditions under which access should be
refused, presents the wrong psychological base for secure system design. A
conservative design must be based on arguments why objects should be
accessible, rather than why they should not.”

Open Design
The design should not be secret. Do not rely on security through
obscurity.

“The mechanisms should not depend on the ignorance of potential attackers,
but rather on the possession of specific, more easily protected, keys or
passwords. This decoupling of protection mechanisms from protection keys
permits the mechanisms to be examined by many reviewers without concern
that the review may itself compromise the safeguards. In addition, any
skeptical user may be allowed to convince himself that the system he is about
to use is adequate for his purpose. Finally, it is simply not realistic to attempt
to maintain secrecy for any system which receives wide distribution.”

Complete Mediation

Every access to every object must be checked for authority.

“This principle, when systematically applied, is the primary underpinning of
the protection system. It forces a system-wide view of access control, which
in addition to normal operation includes initialization, recovery, shutdown,
and maintenance. It implies that a foolproof method of identifying the source
of every request must be devised. It also requires that proposals to gain
performance by remembering the result of an authority check be examined
skeptically. If a change in authority occurs, such remembered results must
be systematically updated.”

Complete Mediation

Least Common Mechanism
Minimize the amount of mechanism common to
more than one user and depended on by all users.
“Every shared mechanism represents a potential information path between
users and must be designed with great care to be sure it does not
unintentionally compromise security. Further, any mechanism serving all
users must be certified to the satisfaction of every user, a job presumably
harder than satisfying only one or a few users. For example, given the choice
of implementing a new function as a supervisor procedure shared by all
users or as a library procedure that can be handled as though it were the
user's own, choose the latter course.”

Work Factor

Compare the cost of circumventing the mechanism
with the resources of a potential attacker.
The cost of circumventing in some cases can be easily calculated. For example, the
number of experiments needed to try all possible four letter alphabetic passwords is
264 = 456,976. If the potential attacker must enter each experimental password at a
terminal, one might consider a four-letter password to be adequate. On the other hand,
if the attacker could use a large computer capable of trying a million passwords per
second, as might be the case where industrial espionage or military security is being
considered, a four-letter password would be a minor barrier for a potential intruder.

Defense in Depth

Layer defensive mechanisms.

Defend a system against any
particular attack using several
independent methods

If one mechanism fails, another
steps my prevent the attack.

Security Principles and Mechanisms
CS155 Computer and Network Security

